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Abstract

Measuring for privacy: From tracking to cloaking

Nayanamana Samarasinghe, Ph.D.

Concordia University, 2022

We rely on various types of online services to access information for different uses,

and often provide sensitive information during the interactions with these services. These

online services are of different types; e.g. commercial websites (e.g., banking, education,

news, shopping, dating, social media), essential websites (e.g., government). Online ser-

vices are available through websites as well as mobile apps. The growth of web sites,

mobile devices and apps that run on those devices, have resulted in the proliferation of on-

line services. This whole ecosystem of online services had created an environment where

everyone using it are being tracked. Several past studies have performed privacy measure-

ments to assess the prevalence of tracking in online services. Most of these studies used

institutional (i.e., non-residential) resources for their measurements, and lacked global per-

spective. Tracking on online services and its impact to privacy may differ at various loca-

tions. Therefore, to fill in this gap, we perform a privacy measurement study of popular

commercial websites, using residential networks from various locations.

Unlike commercial online services, there are different categories (e.g., government,

hospital, religion) of essential online services where users do not expect to be tracked. The

users of these essential online services often use information of extreme personal and sensi-

tive in nature (e.g., social insurance number, health information, prayer requests/confessions

made to a religious minister) when interacting with those services. However, contrary to
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the expectations of users, these essential services include user tracking capabilities. We

built frameworks to perform privacy measurements of these online services (include both

web sites and Android apps) that are of different types (i.e., governments, hospitals and

religious services in jurisdictions around the world). The instrumented tracking metrics

(i.e., stateless, stateful, session replaying) from the privacy measurements of these online

services are then analyzed.

Malicious sites (e.g., phishing) mimic online services to deceive users, causing them

harm. We found 80% of analyzed malicious sites are cloaked, and not blocked by search

engine crawlers. Therefore, sensitive information collected from users through these sites is

exposed. In addition, underlying Internet-connected infrastructure (e.g., networked devices

such as routers, modems) used by online users, can suffer from security issues due to non-

use of TLS or use of weak SSL/TLS certificates. Such security issues (e.g., spying on a

CCTV camera) can compromise data integrity, confidentiality and user privacy.

Overall, we found tracking on commercial websites differ based on the location of cor-

responding residential users. We also observed widespread use of tracking by commercial

trackers, and session replay services that expose sensitive information from essential online

services. Sensitive information are also exposed due to vulnerabilities in online services

(e.g., Cross Site Scripting). Furthermore, a significant proportion of malicious sites evade

detection by security/search engine crawlers, which may make such sites readily available

to users. We also detect weaknesses in the TLS ecosystem of Internet-connected infrastruc-

ture that supports running these online services. These observations require more research

on privacy of online services, as well as information exposure from malicious online ser-

vices, to understand the significance of privacy issues, and to adopt appropriate mitigation

strategies.
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Chapter 1

Introduction

1.1 Motivation

The early web only allowed access to static content that did not maintained state between

multiple client requests; i.e., web pages containing static HTML. Over time, the web re-

shaped to be more consumer-oriented with the introduction of web technologies that fa-

cilitate rendering dynamic content (e.g., cookies, JavaScript), and various browsers (e.g.,

Netscape, Internet Explorer, Firefox) started supporting those technologies. Subsequently,

with the commercialization of the web, various online services were created for financial

gain [279, 199] — e.g., e-commerce platforms created as a result of the dot-com bubble

(e.g., Amazon), social media platforms (e.g., Facebook), micro-blogging and social net-

working services (e.g., Twitter). The commercialization of the web have also allowed a

personalized experience for its users, which in turn provide third parties (e.g., ads/analytics

services) to infer browsing behaviours for tracking users. Mobile apps have expanded the

landscape of online services. As more services are transitioned to online space, it cre-

ated more opportunities to track users, and to build better user profiles by corelating users’

browsing behaviours across various types of online services. Tech giants (e.g., Google,

Facebook) track users to provide a better user experience [102], but at the same time they
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also profile users for monetization purposes. Although users are aware of such practices,

they still accept such inevitable tracking, to consume services (e.g., Google maps) that are

offered at no cost. Tracking online services is not only limited for rendering advertisements

that are used to target users with personalized content, but have also used for government

surveillance programs [98].

Lack of global perspective in past privacy measurement studies. Several past measure-

ment studies [97, 98, 173, 34] have focused on various aspects of tracking on commercial

online services, and its impact on privacy of users. Englehardt et al. [97] measured the

extent of third-party trackers (e.g., script/cookies) on Alexa Top-1M websites, and found

many trackers on these sites, where most of those trackers were from market leaders (e.g.,

Google, Facebook). In addition, advanced fingerprinting methods were used to passively

track users of these websites. Lerner et al. [173] performed a longitudinal study of web

tracking behaviours (from 1996 to 2016), and found an increase in third-party tracking on

the web in prevalence and complexity, and their findings can trigger technical and policy

discussions surrounding tracking. Binns et al. [34] studied the prevalence of third-party

tracking on 959,000 apps from US and UK Google Play stores, and found most apps

included third party tracking; their distribution of trackers were long-tailed with several

highly dominant trackers. Englehardt et al. [97] and Binns et al. [34] observed a large num-

ber of trackers, on news related websites and apps, respectively. Privacy measurements of

these studies focused on tracking of institutional users who typically do not use residential

networks to interact with online services. Also, past privacy measurement were carried

out from a particular location [97] or from a few jurisdictions [113]. Therefore, a clear

understanding on web tracking from a global perspective is still lacking.

Lack of privacy measurements of essential online services. Following the commercial-

ization of the web, various essential services (e.g., governments, health services, religious

communities) have transitioned to online space, to expand their services, increase efficiency
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and to reach a larger audience. The recent COVID-19 pandemic also accelerated the mov-

ing of these essential services to online space, due to limitations in physically consuming

such services. In contrast to tracking in commercial online services, users do not expect

commercial trackers on these essential online services. Such tracking on essential online

services is quite revealing, due to the sensitive nature of information that is used to interact

with these online services. Disclosure of sensitive information from these essential online

services (if any), can even lead into risks such as discrimination and social stigma. How-

ever, tracking on these essential online services has not been comprehensively studied. If

user profiling from tracking of commercial online services are integrated with that of these

essential online services, it can cause adverse consequences to users — Canadian commer-

cial data brokers collect deidentified patient data from pharmacies, private drug insurers,

federal government and medical clinics without the consent of patients [47]. This practice

of commercializing unconsented patient data, risks the loss of anonymity of data, use of

patient data for surveillance/marketing and discrimination.

Cloaking behaviours of malicious websites. As traditional services are transitioned to

online space, adversaries launch malicious sites to collect sensitive information of users

(e.g., user credentials, personal information) — e.g., phishing sites that mimic web sites

of popular services (e.g., financial institutions, governments), spyware to gather browsing

activities and login credentials of users. These adversaries use various techniques (e.g.,

cloaking) to avoid detection of these sites by security/search engine crawlers. If the mecha-

nisms in placed to detect these malicious sites are evaded, adversaries will be successful in

collecting sensitive information of users by deceiving them, impacting the privacy of users.

Security issues leading to privacy exposures. Online services can also suffer from various

security issues. These security issues can lead into jeopardizing the protection of data

collected by various automations, or provided by users during interactions with those online

services. This will result in users loosing control of their own data, impacting their privacy.
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These security issues are of many forms — e.g., malicious dependencies such as JavaScript

libraries, Android SDKs; security issues in online services due to bad coding practices;

vulnerabilities in the underlying infrastructure (comprised of various Internet-connected

devices).

1.2 Thesis statement

Our research is primarily focused on privacy measurements of online services that are not

comprehensively explored in the past (e.g., essential online services), or studied only from

a fixed or limited number of geographical locations. In addition, we also look into privacy

issues that are often caused by various security issues (e.g., web cloaking, weaknesses in

the use of TLS of the underlying infrastructure). As part of our research focus, we explore

the following research questions:

Question 1. Is there a variation in tracking residential users (cf. institutional users) by

commercial trackers on popular websites, from a global perspective?

Question 2. Do commercial trackers perform tracking on essential online services used

by users, and what is the significance of such tracking?

Question 3. What techniques can be used to identify cloaked malicious websites that

mimic legitimate popular websites (e.g., websites of popular brands)?

Question 4. How vulnerable is the TLS ecosystem for Internet connected devices (due

to weaknesses in TLS certificates), that support the running of various online services used

by end users (cf. popular web sites)?

1.3 Objectives and contributions

This research aims in providing multiple frameworks for performing privacy measurements

by extending the contributions made from past work [97, 282]. The privacy measurements
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in this thesis are related to profiling of users, with tracking on online services, and leakage

of personal information. We make the following contributions; contributions 1, 2, 3 and 4,

assist in answering research questions 1, 2, 3 and 4 (see Section 1.2), respectively.

1. We build a framework to perform privacy measurements of websites by proxying

residential networks in various locations around the world, to measure tracking of

residential users. Using this framework, we collect metrics pertaining to stateless

(cookies, JavaScript) and stateful (fingerprinting) forms of tracking, and analyze the

prominence of commercial trackers on popular commercial websites from a global

perspective. We observe a significant variation of trackers on first party websites

between the analyzed countries — websites in United Kingdom and Armenia have

a higher prominence of trackers, while Ethiopia and Iran have the least. Countries

subjected to censorship, attract less trackers on popular websites. Also, a significant

number of cookies have a larger validity period (i.e., greater than 1 year) across the

analyzed countries.

2. We implement a framework to perform privacy measurements of essential online ser-

vices (e.g., websites and Android apps) used by online communities. This framework

can be customized to adapt various types on essential online services. The essential

online services that we collect for privacy measurements, are done on a best effort

basis, and the sources from which those online services are extracted, may not cover

all available online services, of the selected essential service types. It can instru-

ment both stateful and stateless tracking metrics from privacy measurements of web

sites, identify information exposure from session replay, perform static and dynamic

analysis of Android apps, scan websites/Android apps and included third party do-

mains with VirusTotal to find those that are flagged as malicious. The information

collected from this framework is analyzed to identify tracking and exposure of sen-

sitive information. We observe that some analyzed essential websites send sensitive
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information (e.g., user credentials, email address, phone number) to remote session

replay providers. A large number of third party scripts and cookies are set on es-

sential websites by Google. Some of the cookies set on these websites expire after

many years (e.g., in year 9999). Similar to the essential websites, SDKs included on

a essential Android apps to track users, are largely dominated by Google. In addi-

tion, some essential apps send sensitive information (e.g., login information, device

identifiers) over plain HTTP, to remote third parties.

3. We develop a crawler to identify cloaking in malicious websites. This crawler uses

VirusTotal to identify malicious domains, and a set of heuristics to determine the

presence of cloaking (to avoid detection by security/search engine crawlers) in web-

sites. The crawler supports websites with both static/dynamic content. As part

of this work, we also build an automated framework to extract live typo-squatting

and combo-squatting domains that are fed to the crawler, to determine the extent of

cloaking in the malicious websites hosted on the extracted typo-squatting/combo-

squatting domains. Our crawler extracts features based on links, headers, content

and screentshots of analyzed web pages, and formulate dissimilarities between a site

viewed from a Chrome browser and Googlebot. Using our heuristics, we found 80%

of cloaked sites were malicious — 46% of the cloaked malicious sites, persist even

after 3 months.

4. We study the vulnerabilities in the TLS ecosystem for Internet connected devices

(specifically on SSL/TLS certificate weaknesses). For this work, we collect certifi-

cates pertaining to TLS deployments of networked devices from the Censys search

engine [88, 51]. We identify different types of networked devices using annotations

in Censys search engine results. Thereafter, we extract SSL/TLS parameters (e.g.,

cipher suite, SSL/TLS protolcol version, RSA key length) from the collected cer-

tificates, to identify those devices that are prone to TLS vulnerabilities. From our
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findings, we observe that, despite the sharp increase of devices that continue to adopt

TLS, still a large number of devices use weak TLS parameters.

The source code of frameworks and data sets pertaining to the different studies of this

thesis are shared at https://github.com/nayanamana/PhD, for the benefit of fu-

ture research.

1.4 Ethical considerations

Prior to the commencement of all studies that pertain to tracking and privacy measurements,

we reach out to the internal Research Ethics Unit of our university (Concordia University,

Montreal, Canada), and explain them our studies (including test methodologies). In addi-

tion, during our experiments of different studies, at each stage, we keep the Research Ethics

Unit informed of our findings, and how we handle sensitive data.

During our study relating to tracking on popular sites from different residential ma-

chines accessed through a proxy, we were unaware of sites blocked/censored from the

respective jurisdictions, which may cause legal problems to users (of whom, we do not

have contact information). With studies relating to essential Android apps, we do not use

the sensitive information (e.g., user identifiers and passwords) extracted from static and dy-

namic analyses of Android apps for any intrusive validations that may have an impact to the

privacy of users. In addition, we did not retain any data from exposed Firebase databases.

Furthermore, we limit the security evaluation of religious online services due to possible

legal and ethical issues.

For each of the studies, the Research Ethics Unit of our University, did not object to our

test methodologies, and did not require us to go through a full ethics evaluation.

7

https://github.com/nayanamana/PhD


1.5 Related publications

All research topics in this thesis have been peer-reviewed. The corresponding publications

are listed below; (1), (2), (3), (4) and (5) are also co-authored by other students; (1) and

(2) are not included in this thesis. My contributions for (5) include assisting with setting

up the test environment, synthesizing the results and writing. For (4), I was involved in

identifying session replay services included in hospital websites, synthesizing results col-

lected from privacy measurements, and writing. For (3), my contributions include, all the

work other than the experiments pertaining to religious Android apps. Contributions for (1)

and (2) include the literature review on related work, synthesizing results from information

collected, and writing.
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2. S. Pourali, N. Samarasinghe and M. Mannan. Hidden in plain sight: Exploring en-

crypted channels in Android apps. In ACM Conference on Computer and Commu-

nications Security (CCS’22), Los Angeles, USA, Nov. 2022.

3. N. Samarasinghe, P. Kapoor, M. Mannan, and A. Youssef. No salvation from track-
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2022.
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for Cybersecurity (WTMC’22), Genova, Italy, pp. 278-286, June 2022.

5. N. Samarasinghe, A. Adhikari, M. Mannan, and A. Youssef. Et tu, brute? Privacy
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analysis of government websites and mobile apps. In Proceedings of the ACM Web

Conference (TheWebConf’22), Online, pp. 564-575, Apr. 2022.

6. N. Samarasinghe and M. Mannan. On cloaking behaviors of malicious websites.

Computers & Security, 101:102114, 2021.

7. N. Samarasinghe and M. Mannan. Towards a global perspective on web tracking.

Computers & Security, 87:101569, 2019.

8. N. Samarasinghe and M. Mannan. Another look at TLS ecosystems in networked

devices vs. web servers. Computers & Security, 80:1–13, 2019.

9. N. Samarasinghe and M. Mannan. Short paper: TLS ecosystems in networked de-

vices vs. web servers. In Financial Cryptography and Data Security (FC’17), Malta,

pp. 533-541, Apr. 2017.

1.6 Outline

The rest of the thesis is organized as follows. Chapters 2 introduces background material

relating to privacy measurements. Chapter 3 explores tracking of popular commercial sites

from the perspective of residential users in a global perspective. Chapters 4, 5, 6 con-

tain privacy measurement studies, for essential online services pertaining to governments,

hospitals and religions, respectively. Chapter 7 (cloaking in malicious websites to evade

detection) and Chapter 8 (a longitudinal study of vulnerabilities in TLS deployments of

networked devices compared to that of popular websites) focus on security issues that will

eventually have an impact on the privacy of online users. Because of the wide scope of

research topics covered in this thesis , we have the discussion on related work in each indi-

vidual chapter instead of a dedicated chapter of the thesis. Chapter 9 mentions future work

and highlights the concluding remarks of this thesis.
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Chapter 2

Background

This chapter presents different concept and technologies used throughout the subsequent

chapters of this thesis.

2.1 Technologies used in tracking online services

In this section, we describe web technologies that make tracking on online services possi-

ble.

2.1.1 Tracking technologies

Various technologies that are used in websites and mobile apps to track users are discussed

in this section.

JavaScript. Tracking scripts written in JavaScript are included in web pages to provide

a dynamic browsing behaviour with websites (e.g., loading content without reloading a

web page, web animation, input validation) for users. Besides, JavaScript can also log

data about user’s browsing behaviours that can be used for personalization, analytic and

ad tracking. Possible functions of JavaScript tracking code include event tracking (e.g.,
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keystrokes, mouse clicks) with web page elements, control of clicks through advertisements

and tracking of marketing campaigns.

Cookies. HTTP protocol is stateless and handles each HTTP request independently from

other HTTP requests. However, a web site requires the capability to identify a user having

multiple interactions with it through a specific browser. This is necessary for both legit-

imate (e.g., user authentication) and tracking purposes. In order to serve these purposes,

cookies are used. HTTP cookies are a small piece of information stored in the user browser.

There are two types of cookies [80] — HTTP cookies and JavaScript cookies. Using the

Set-Cookie HTTP response header, a domain can set a HTTP cookie in the user’s browser.

This cookie is defined by the triplet (host, key, value), where host refers to the domain that

sets the cookie. The browser may store the cookie and send it back to the same server with

later requests (i.e., server can distinguish if two requests come from the same browser). A

time period can be set after which the cookie should not be sent. Also, additional restric-

tions [80] are allowed to set a cookie for a specific domain and a path, to limit where the

cookie is sent. Similarly, document.cookie property is used to create JavaScript cookies

(programmatically). Every cookie is stored in the browser with an associated domain and

path, so that every new HTTP request sent to the same domain and path gets a cookie as-

sociated to it, that is attached to the request. Based on the life time of a cookie, it can be

categorized as a session cookie (cookie is deleted when the current browser session ends)

or a persistent cookie (cookie is valid until the date specified by the Expires attribute, or

after a period of time specified by the Max-Age attribute).

Referer header. The HTTP referer [79] is used to identify the address of the webpage from

which the web resource is requested (i.e., from where the request was originated). Instead

of using third party trackers to uniquely identify a user across websites, it is possible to

identify which website the user is visiting, using the HTTP referrer header. This also

allows recreating user’s browsing history. By default, the browser sends the Referer field
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in every HTTP request. Third parties may also use other techniques (e.g., JavaScript calls

to document.location) to identify the visited page.

Tracking SDKs. Software Development Kits (SDKs) [127] are Application Programming

Interfaces (APIs) that are in the form of on-device libraries of reusable functions used to

interface to a particular programming language. These SDKs are included as small code li-

braries in mobile apps for serving advertisements, provision of analytics, push notifications

and tracking user activity in mobile devices. Tracking SDKs are developed for different

mobile platforms (e.g., Android, iOS).

2.1.2 Content included by first and third party domains

Websites are comprised of first party content and third party content. The latter includes

content from advertisements, web analytic scripts, social widgets and images. We define

a first party domain as the domain of the website, while third party domains are domains

that service third party content on the website. First party cookies are set by the first party

domains or programmatically via scripts running in the context of the website. These first

party cookies are used to track users within the same website. In contrast, third party

cookies set by third party domains, allow third parties to track users across websites [235].

2.2 Techniques of tracking websites

In this section. we present different tracking techniques used in websites.

Cross-site tracking. Third party cookies set by a tracking domain can be used to track

user’s activity across websites [36]. When a user directly visits a website that includes

content from a third party tracker (e.g., a social share plugin from Facebook), the browser

will send a request to fetch its content. The third party tracker will then set a third party

cookie as part of the response on user’s browser. When the user visits a different website
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that include the content of the same third party tracker, the other website will receive the

cookie set on the original website, linking the user’s activity across both websites.

Cookie syncing. According to the Same Origin Policy (SOP) [300], cookies set by user’s

browser is only accessible to the domain that sets it. However, third parties can leverage

cookie syncing [3] to merge information collected that pertain to users, and to recreate a

more comprehensive history of user browsing behaviours. To perform cookie syncing, third

parties share identifiers of the same user among different third parties. Cookie syncing is

often used in real time bidding actions used for targeted advertisements [148].

Cookie respawning. With cookie respawning [259], a cookie that is deleted by a user is

automatically respawned. Several techniques are used to respawn a cookie. When a user

visits a website that supports cookie respawning, the website generates a user identifier

(included in cookies) that stored in multiple storages. Consequently, when the use deletes

the corresponding cookie, the website can recover it from a backup storage. The backup

storage from which the cookies are recovered and respawned can be Flash [259], ETags,

browser cache [260] and IndexDB.

Session replay. In order to reconstruct the presentation of how a user experiences a website

or a mobile app, session replay [19] is used. It captures keystrokes, clicks, mouse move-

ments and page scrolls while a user browses through a website. Then, it creates a video of

a walk-through to show what the user performed, while he was on the website/mobile app.

Unlike traditional analytic tools, session replay provides a more visual way of determining

user’s browsing behaviours. Session replay tools should be properly configured to ensure

possible user privacy issues are addressed — e.g., no private and sensitive information are

collected during session replay. In addition, private and confidential user data (e.g., email

address, date of birth) should be masked.

Browser fingerprinting. This is a stateless tracking mechanism used to collect infor-

mation relating to the browser (e.g., browser type and version), operating system, active
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plugins, timezone, language, screen resolution and other device/hardware specific charac-

teristics. Then, the collected information are used to build a unique identifier that relies

on several browser (e.g., user agent, WebGL) and machine level (e.g., AudioContext, Au-

dioWorkletNode) characteristics [157]. Past studies [94] mention that there is significantly

a smaller chance for any two users to have the exact unique identifier derived from the

characteristics used for browser fingerprinting.

2.3 Tracking detection and privacy measurement tools

In this section, we present tracking detection methods and privacy measurement tools that

are used in past studies to measure tracking in online services.

Tracking filter lists. Filter lists contain a list of regular expressions or domain names that

need to be blocked. The most widely used filter rules are EasyList and EasyPrivacy [92],

that are based on a set of rules originally designed for Adblock browser extension. EasyList

is a ad-blocking list used to remove ads on websites. In contrast, EasyPrivacy is a tracker-

blocking list used to remove tracking behaviours. EasyList also provide supplementary

filter lists [93] for a limited number of other languages (e.g., German, Italian, Arabic,

Chinese).

OpenWPM web privacy measurement framework. OpenWPM [223] is a privacy mea-

surement framework for web sites. It supports the collection of instrumented data for

millions of websites (provided as input). Currently, OpenWPM provides an automation

using Selenium, and allows websites to launch in headless mode or through the Firefox

browser. OpenWPM includes several configurable features to facilitate its instrumentations

— e.g., HTTP request/response headers, redirects, POST request bodies; saving properties

accessed/method calls (with arguments) of JavaScript APIs (includes APIs to extract po-

tential fingerprinting attributes); page navigations; callstack details; DNS instrumentations;

cookie instrumentations (i.e., HTTP cookies and JavaScript cookies). OpenWPM can be
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configured to perform both stateless and stateful crawls. It can also save screenshots of

pages crawled. Also, OpenWPM can save response content of web pages crawled to a

LevelDB database.

Mobile Security Framework (MobSF). MobSF [196] is an automated framework that is

capable of doing pen-testing, malware analysis and security assessments of mobile apps

running on different mobile platforms (i.e., Android, iOS, Windows). MobSF can per-

form both static and dynamic analysis with app binaries (e.g., APK files). MobSF provides

REST APIs to upload, scan and generate reports on the analysis of APK files. The dynamic

analyzer in MobSF, performs runtime security assessments and interactive instrumenta-

tions.

LiteRadar. With LiteRadar [182], various instrumentations of tracking data from APK

files of Android apps can be extracted — i.e., tracking SDKs included in an app, the use of

tracking SDKs and permissions required to use an app.

2.4 Luminati - Residential proxy service

Luminati [179] is a commercial HTTP/S proxy service provider that routes traffic through

35 million residential IPs worldwide. The service operates over Hola [139] (installed as a

browser extension) and applications built using the Luminati Monetization SDK [180]—

residential users without a paid subscription. Luminati gradually transitioned from Hola

to a SDK model. However, at the time we ran our experiments (see Chapter 3), Hola

was used comprehensively for Luminati’s exit node infrastructure (i.e., HTTP requests are

served over a browser installed on an exit node of a residential user). Routing in Luminati

goes as follows: a Luminati client makes a proxy connection to a Luminati proxy server

(super proxy); the server forwards the request to an exit node (peer proxy); and the exit

node forwards the response to the super proxy, which in turn is sent back to the Luminati

client. Luminati enables selecting exit nodes by country (or city/ASN at a higher cost), and
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allows the same exit node to be used in subsequent requests by using the “sequential session

(IP) pool” option. Switching the IP address of an exit node in the pool can be configured

based on the number of maximum requests and session duration parameters, or at random.

Luminati also allows controlling DNS resolution to happen at the super proxy (Google

Public DNS), or the exit node. We choose a sequential pool of pre-established sessions to

run a group of requests to target sites. Also, we configure DNS resolution to happen at a

super proxy (US), to prevent DNS localization of web site domains at exit nodes so that

trackers of the same first-party site are comparable between countries; e.g., when crawling

amazon.com, we do not want the exit node to retrieve content from a regional first party

site e.g., amazon.com.mx due to DNS localization. This is unlikely to influence the

comparison of regional trackers as their DNS resolution remains unaffected. Luminati

supports super proxy IP caching where three super proxy IPs in the cache are available to

service requests, eliminating unnecessary timeouts due to distant super proxies.

The IP address of a user, connecting to a websites through a proxy can be identified

using the X-Forwarded-For [188] request header. Adding the IP address of the user to X-

Forwarded-For request header by a proxy defeats the purpose of being anonymous [146]

with the connecting server. Luminati has been adding this header to requests in the past [178].

2.5 Web cloaking

Web cloaking is a technique in which the content presented to a security/search engine

crawler is rendered as benign, and different from the malicious view presented to the user’s

(i.e., the victim) browser. Adversaries who host phishing and malware services want to

hide their activities from the search engine crawler [156]. In addition, adversaries leverage

different search engine optimization (SEO) techniques when showing fake content to search

engine crawlers compared to users who use browser clients. These SEO techniques are used

to increase the ranking of illicit sites [55]. Adversaries can also pay advertising networks
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to show benign advertisements to crawlers, while users view deceptive advertisements that

lead to scams and malware [156].

In order to cloak content, the adversary’s web server needs to distinguish the type of

client (i.e., crawler vs. browser) based on an identifier [301], and the choice of the identifier

depends on the cloaking technique as described below.

1. In user-agent cloaking, the type of client of an incoming request is identified by

inspecting the user-agent string. If the user-agent belongs to a crawler, benign content

is shown, otherwise malicious content is displayed.

2. With IP cloaking, the user is identified using the client IP address of the incoming

request. If the IP address of incoming request is within a well known range of public

IP addresses of a search engine crawler, benign content is rendered. Otherwise, the

IP address most likely belongs to a user/enterprise, in which case malicious content

is displayed.

3. Repeat cloaking is used to victimize a user on the first visit to the website (but not

on subsequent visits). In this case, the state of the user is saved at client side (e.g.,

cookie) or server side (e.g., client IP) to determine a new user visit.

4. Referrer cloaking uses the Referrer field of the request header to determine if the user

clicked through a search engine query result, in which case, the user can be redirected

to a scam web page. In Referrer cloaking, adversary’s objective is to target search

engine users.

In practice, different types of cloaking are combined and used together.
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Chapter 3

Tracking on popular sites from a global

perspective

3.1 Introduction

Several past measurement studies uncovered various aspects of web-based tracking and its

serious impact on user privacy. Most studies used institutional resources, e.g., comput-

ers hosted at well-known universities, or cloud-computing infrastructures such as Amazon

EC2, confining the study to a particular geolocation or a few locations. Would there be

any difference if web tracking is measured from actual user-owned residential machines?

Does a user’s geolocation affect web tracking? Past studies do not adequately answer these

important questions, although web users come from across the globe, and tracking pri-

marily targets home users. Therefore, in this study, we explore variations in tracking as

experienced by residential users, from a global perspective.

Third-party web tracking based on user-behavioral profiling has become a major en-

abling technique for online targeted ads (for business impacts see e.g., [230]; see also

Mayer and Mitchell [187] for a discussion on economics and tracking). Tracking is gener-

ally performed using cookies, scripts and browser/traffic fingerprinting (see e.g., [97, 187]).
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Beyond ads/analytics, tracking can also be effectively exploited by government surveil-

lance programs [98]. Indeed, the US NSA has reportedly used Google cookies for targeted

hacking/surveillance [304, 106].

Several past studies explore the extent of tracking, evolving techniques used for track-

ing, and privacy/business implications of tracking. The literature on tracking is rich and

becoming very useful to researchers and regulatory bodies. Englehardt and Narayanan [97]

recently measured the extent of third-party trackers on Alexa Top-1M websites using the

OpenWPM framework [97]. They run their crawler from an Amazon EC2 instance. Fruchter

et al. [113] performed another study, albeit at a much smaller scale (Alexa Top-250 country-

specific websites), to uncover variations in tracking in four geographical locations (US,

Germany, Australia and Japan) of varying policies/laws/cultures. They also used Amazon

EC2 machines from different locations. Falahrastegar et al. [104] studied web tracking

using Alexa Top-500 country-specific websites for seven countries (USA, UK, Australia,

China and Egypt, Iran, and Syria) from a single location in the UK. To evaluate the pos-

sibility of surveillance via (third-party) cookies and (first-party) plaintext user-identifiers,

Englehardt et al. [98] used Amazon EC2 instances from three geolocations: US (Northern

Virginia), Ireland (Dublin), Japan (Tokyo).

Although the study by Fruchter et al. [113] indicates that there are significant differ-

ences between countries (four in the study), all past studies lack a global perspective, in

terms of the number of locations used to measure tracking (1 to 4 countries). Also, all stud-

ies were conducted from institutional machines and known IP ranges (university/Amazon),

although tracking primarily targets home users (residential machines). Institutional/data

center proxies are also prone to be blocked or challenged with CAPTCHAs, to mitigate

potential abuse (see e.g., [121]). Therefore, for tracking measurements, the use of residen-

tial machines appear to be more appropriate. In some other security-related studies, such

as censorship [214], end-to-end connectivity violation [58], and DNSSEC infrastructure
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management [60], geolocation and/or the use of residential machines have been taken into

more serious consideration.

We focus on exploring the effects of geographical variations in tracking as experi-

enced by residential users in various parts of the world. Considering differences in po-

litical, social, and cultural factors, we choose 56 countries from across the world for

crawling a selected set of web sites, using the Luminati HTTP/S proxy service [179].1

Using OpenWPM, we automatically crawl different types of website URLs (first parties)

including the Alexa Top-1000 global sites (home pages), 1000 URLs hosted on the se-

lected Alexa web domains that were shared via Twitter, and Alexa Top-50 country-specific

sites (home pages). Subsequently, we extract third-party information of scripts and cookies

from the OpenWPM database, and process them using EasyList rules [92] with BlockList-

Parser [253] to perform privacy-related tracking measurements.

Our results show that the prominence of trackers varies significantly between coun-

tries – not only in the country-specific sites, but also for global sites. Furthermore, tracker

prominence of inner links of a website appears to be higher than its home page. A sig-

nificant number of third parties place cookies on websites with long validity periods (e.g.,

>20 years), egregiously violating any reasonable use scenario, and in some cases existing

laws/regulations (e.g., the EU cookie law). Although most trackers are global in nature

(mostly owned by US companies), top trackers from countries such as China and Russia

appear to operate only within the same country.

Contributions.

1. We extend existing tracking measurement studies in three important directions: (i)

crawling websites from 56 countries around the world, representing different politi-

cal, cultural, regulatory, and Internet speed and freedom situations (cf. four countries
1Luminati is a commercial network proxy service, providing residential exit nodes in many countries.

Recent work by Mi et al. [191] raises serious doubts about how these machines are recruited (e.g., possibility
of compromised machines). However, their methodology for characterizing Luminati nodes appears to be
unclear—discussed more in Section 8.2.
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used in [113]); (ii) the use of residential computers via the Luminati proxy service as

opposed to institutional/data center machines; and (iii) analyzing web content from

home pages and inner links of selected Alexa domains (also studied in [97] for a

single location). Our methodology provides a more bona fide, global perspective on

tracking.

2. We find that for most cases, a tracker’s prominence changes significantly with the

geographic location, beyond the dynamic nature of current advertisement/tracking

ecosystems (which we also measure separately from Montreal, Canada).

3. We also confirm the findings from existing studies and extend them; e.g., similar to

Trevisan et al. [287], we also found that the EU cookie law [276] is violated by most

tracking companies/sites. Forwarding web requests to local IP addresses through

DNS hijacking was reported for Iran [25]; we also observe similar behavior in Saudi

Arabia and Uzbekistan in significant numbers.

3.2 Related work

Our work provides a more inclusive, global perspective on tracking, by leveraging exist-

ing tools and methodologies from several past studies. Here we summarize a few such

efforts. Fruchter et al. [113] measure tracking variations in four countries with different

privacy models (as categorized in [270]): (1) comprehensive, protecting all digital data

(Germany); (2) sectoral, protecting certain types of data such as health-care (USA, Japan);

(3) co-regulatory, similar to (1), but enforcement is done by industry (Australia); and (4)

mixed/no-policy, no protection for digital privacy (China/Russia, not studied in [113] due

to the non-availability of AWS EC2 instances in those countries). They use Alexa Top-250

country-specific sites, and report significant differences in tracking activities between the

countries. For example, the number of third-party cookies in news sites are considerably
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more in the USA, Japan and Australia, compared to Germany. They further conclude that

tracking differences in countries may not solely depend on their privacy models, but also

on factors such as policy, regulations and culture.

Tracking primarily leverages third-party scripts and cookies, but other advanced/subtle

techniques are also used, e.g., evercookies, cookie syncing, and fingerprinting of browser

type, canvas/font, web traffic, and WebRTC, AudioContext and battery-level APIs; cf. [3,

187, 209]. In a comprehensive measurement study, Englehardt and Narayanan [97] recently

measured the extent of third-party on Alexa Top-1M websites using the OpenWPM frame-

work [97]. They make 15 types of measurements of stateless and stateful tracking tech-

niques. Their results include many important findings: only few third-parties are present

in most sites, news sites hosting the most number of trackers, the use of advanced stateless

fingerprinting techniques in the wild, and effectiveness of anti-tracking measures (addons

and browser features). They also crawl four internal pages of Alexa Top-10K domains; top

20 trackers are found more prominently on the internal pages compared to the home pages.

Tyson et al. [288] analyze the degree of HTTP header manipulation by middleboxes

across ASes in different networks and regions around the world, using Hola [139] (a peer-

to-peer VPN service operated by Luminati). They report that 25% of the ASes modify

HTTP headers, and the level of manipulation depends on the region and AS type: well-

connected regions have fewer caching headers than less-connected regions with costly tran-

sit. However, the frequent use of cached data from legacy middleboxes can be exploited.

Using Luminati, Chung et al. [58] propose a novel approach to identify end-to-end vi-

olations in HTTP, HTTPS and DNS protocols. They observe that web content sent over

HTTP is compressed inflight by some ISPs. They identify a vulnerability where HTTP

requests from users are recorded at ISP middleboxes, and the same content is fetched later

by third party servers. This allows adversaries to monitor HTTP responses, raising privacy

implications.

22



Pearce et al. [214] designed a measurement platform to assess DNS manipulation at-

tempts for imposing Internet censorship, by leveraging OpenDNS resolvers hosted by ISPs

and cloud service providers from 151 countries. They reported that DNS manipulation is

heterogeneous across countries, domains and DNS resolvers. Several countries such as

Iran, Pakistan, China are found to use DNS manipulation for censorship.

Merzdovnik et al. [190] analyze the effectiveness of current anti-tracking privacy tools

on more than 100,000 websites from Alexa Top-200K domains; some of these tools are

very effective (over 90% success rates) against stateful trackers, and less successful against

stateless fingerprinting trackers. They also report that over 60% of the third-party requests

didn’t use TLS, which makes it possible for adversaries to passively analyze the unen-

crypted traffic (i.e., third-party requests and responses). They also highlight the danger of

over-reliance of a specific third-party tracker being used in a large number of first-party

sites (cf. NSA’s alleged exploitation of Google cookies [304, 106]).

According to the EU Internet Handbook [276], the use of profiling/tracking cookies

require explicit user-consent; session cookies and cookies that are required for essential

functionality are exempted. Trevisan et al. [287] use 35,862 popular sites from 25 coun-

tries (21 EU and 4 non-EU) to measure the compliance of the EU ePrivacy Directive (also

known as the EU cookie law). They also use proxy services from eight EU countries to

check variations of tracking cookies based on browsing locations (the EU cookie law’s en-

forcement varies across member states). The authors identify cookies in trackable context

by comparing them with a public list of web tracker domains.2 They find 65% of the web

sites fail to comply with the cookie law (i.e., a cookie is set before a cookie accept bar is

even displayed to the user). They also observe that 80% of the third-party cookies last more

than a month, and approximately half of those cookies remain valid for more than a year.

We find 22% of the cookies remain valid over a year across EU countries (vs. 23% across

2https://better.fyi/trackers/alexa-top-500-news/
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all 56 countries).

Mayer et al. [187] observe that third-party web tracking is transitioning from a regu-

latory vacuum to regulatory frameworks, implemented by government organizations (e.g.,

US FTC, EU ePrivacy Directive, and self-regulatory programs such as Network Advertis-

ing Initiative, Interactive Advertising Bureau).

Degeling et al. [78] analyzed GDPR’s impact on Top-500 country specific sites in 28

member states in the EU. They found that GDPR made the majority of companies to make

adjustments to accommodate the new regulations. Despite, the authors claim, we find that

tracking activities have not changed and most cookie consenting libraries are not meeting

the requirements of the GDPR.

Schelter et al. [244] performed a large scale analysis of third-party trackers using the

Common Crawl 2012 corpus. The corpus may contain tracking information of residential

as well as institutional users. Since third parties are extracted from static embedding of

web pages, transient trackers having dynamic content are not considered. In contrast, our

study includes mostly residential computers, and the content we collected is not limited to

static trackers.

Web services may be divided into categories e.g., culture, religion, news, sports, etc. To

measure tracking variation across different categories, Falahrastegar et al. [104] study seven

countries from all continents with different languages using 500 most popular country-

specific web sites (crawled from a UK location). Their findings show that some of the

top trackers are local to the hosting country of the corresponding first-party website (e.g.,

websites from China and Iran).

Mi et al. [191] use five residential proxy services including Luminati, for ille-

gal/unwanted/malicious nodes in these ecosystems. They claim that Luminati runs many

IoT devices although most exit nodes are indeed residential. However, their methodol-

ogy for detecting IoT devices inside a NAT requires scanning the internal network (local

24



subnet), which is disallowed by Luminati; thus, such device characterization for Luminati

seems to be flawed (also confirmed by Luminati). Luminati also informed us that their

proxy software is not supported on any IoT devices (available only for desktop and mobile

OSes). Also, Luminati software is installed with explicit user consent, in contrast to the

claim by Mi et al. [191]—see Section 3.3.4 for more issues related to ethics.

3.3 Methodology

We use the Luminati proxy manager [179] to run experiments from 56 countries, and the

OpenWPM privacy measurement framework [97] for automating browser data collection

and tracker analysis on a selected list of URLs. With OpenWPM [97], we automate the

crawling of a large number of URLs. The built-in proxy that is available in OpenWPM

is replaced with Luminati. We configure OpenWPM (ver: 0.7.0) for stateless crawling

(each new page-visit uses a separate browser profile), as we are primarily interested in the

location-related aspects of tracking. Instrumentation results are stored in a local SQLite

database; we modify the database schemas to record additional information, e.g., the exit

node’s IP address, AS details, and location (country). We launch three browser sessions

simultaneously through OpenWPM; we could not further increase the number of paral-

lel sessions due to performance issues which would crash the crawling sessions (system

configuration: AMD FX8350, 8GB RAM, Ubuntu 16.04, Gigabit Internet).

The requests from OpenWPM crawls are proxied via Luminati, so that they go through

exit nodes in the country of our choice. Luminati passes the response from exit nodes back

to OpenWPM, which processes the response data, extracts privacy related measurements,

and stores them in a database. We then query the database to analyze the measurement data

and compute various metrics.

In this work, we expand on our country/URL selection, and define trackers and their

prominence (largely based on [97]). Through Luminati, we process a total of 68,800 URLs.
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Figure 1: Our system setup - Measurement of tacking residential users from a global perspective.

These sites include, Alexa Top-1000 (global) and Top-50 (country specific) URLs from 56

countries, and 1000 URLs shared via Twitter for 10 selected countries. Each URL request

takes 1.16MB of bandwidth on average (including repeated attempts for failed/timed-out

requests). We run the experiments between June 1 and July 8, 2017. Using Luminati is

expensive. 3

We only considered successful third party requests for our analysis. Those URL re-

sponses with client errors (4xx status code) and server errors (5xx status code) are elimi-

nated from the analysis. Such failures are attributed to many reasons (e.g., authentication

issues, timeouts, censorship).

3.3.1 Country and first-party site selection

The use of residential machines from all countries/regions/cities would be ideal for our

goal. However, using Luminati is costly, and it also lacks exit nodes in certain countries

(e.g., North Korea). Covering several regions with various political and socio-economic

3With the cheapest Luminati Starter residential package, it costs USD 12.50/1GB (for 40GB, with a
minimum monthly commitment of USD 500). Hence, we incurred USD 14.50 for 1000 URLs. Therefore,
for 56 countries, it will cost USD 812 to process 1000 URLs. For 1 million URLs (cf. [97]) from 56 countries,
the cost will be USD 812,000. We thus had to limit the number of crawled URLs.
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situations, we select 56 countries. We list in Table 4 the countries in various regions used

in our experiments. Our selection is influenced by Freedom House [111], and Swire and

Ahmad [270].

Asia-Pacific Australia (AU), Bangladesh (BD), China (CN), India
(IN), Japan (JP), Malaysia (MY), Myanmar (MM),
Pakistan (PK), Philippines (PH), Singapore (SG),
South Korea (KR), Sri Lanka (LK), Vietnam (VN)

Americas Argentina (AR), Brazil (BR), Canada (CA), Colom-
bia (CO), Cuba (CU), Ecuador (EC), Mexico (MX),
United Sates (US), Venezuela (VE)

Europe Estonia (EE), France (FR), Germany (DE), Great
Britain (GB), Hungary (HU), Iceland (IS), Italy (IT),
Turkey (TR), Switzerland (CH)

Eurasia Armenia (AM), Georgia (GE), Kazakhstan (KZ),
Russia (RU), Ukraine (UA), Uzbekistan (UZ)

Middle East and North Africa Bahrain (BH), Egypt (EG), Iran (IR), Israel (IL), Jor-
don (JO), Lebanon (LB), Libya (LY), Morocco (MA),
Saudi Arabia (SA), Tunisia (TN), United Arab Emi-
rates (AE)

Sub-Saharan Africa Ethiopia (ET), Kenya (KE), Nigeria (NG), Rwanda
(RW), South Africa (ZA), Sudan (SD), Uganda (UG),
Zimbabwe (ZW)

Table 1: List of regions and countries.

The 2050 distinct URLs that we use for crawling include: (1) home pages of Alexa

Top-1000 global domains; (2) 1000 popular URLs that are shared via Twitter from the

Alexa Top-1000 domains, excluding home pages, and links to media (e.g., images, audio

and video) and text files (which may not host any tracker); and (3) home pages of Alexa

Top-50 country-specific domains.

We extract Twitter URLs using Tweepy [159] that internally uses the Twitter

streaming APIs to access the global stream of Twitter data. Twitter mandates that a

client filter the streamed data according to a specific criterion. To not omit streams

from any parts of the world, we use: twitterStream.filter(locations =

[-180,-90,180,90]). Assuming geotagging is turned on, this filter selects tweets
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from all around the world using the locations filter. We select the most shared URLs from

the Alexa Top-1000 domains.

3.3.2 Tracker identification and prominence

We define the third parties as follows. (1) Third-party scripts: the domain on which the

third-party script runs is different from the domain of the first-party site. (2) Cookies: the

cookie’s domain is different from the domain of the first-party site.

Not all identified third parties may necessarily be trackers. Third party domains can be

trackers, advertisers, or simply content embedded on a first-party site. We use BlockList-

Parser [253] to filter third parties in a tracking context with the aid of a set of ad-blocking

filtering lists as used by the AdBlock browser extension: EasyList and EasyPrivacy [92].

EasyList tracking protection lists contain rules to identify trackers which are also advertis-

ers, while EasyPrivacy identifies non-advertising trackers [97]. This filtering is in line with

previous studies; cf. [97, 113]. For analysis, we keep trackers that exist on at least two first-

party sites (similar to [97]). Since advertisers in certain circumstances can play a dual role

as trackers, we emphasize that the identified trackers in our analysis may fall into a lower

bound of trackers in reality; more sophisticated filtering is difficult (e.g., some third parties

directly, or through their parent organizations, may act as genuine content providers [119]).

For example, Google receives a large proportion of content related third-party requests that

do not fall into the categories of tracking or advertisements.

To identify tracker domains based on third-party scripts or cookies, we use public suf-

fix + 1 (PS+1) of the script URL or the cookie domain (along with Mozilla’s Public Suffix

List4 as in [97]). For example, if the script URL is http://tpc.googlesyndication.

com/sodar/d5qAyLYU.js, then PS+1 of the domain is googlesyndication.com; if the

4Hosted at: https://publicsuffix.org; a public suffix is defined as “one under which Internet
users can (or historically could) directly register names.”
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script is included as a dependency in http://oneindia.com, then googlesyndica-

tion.com is a third-party tracker.

Tracker prominence. A possible limitation of measuring a tracker’s activity using the

number of first parties on which the tracker is present is that the tracker may have a low

first-party count, when a limited number of first-party sites are used. To properly rank

trackers’ prominence, we use the following metric from Englehardt and Narayanan [97]:

Prominence(t) =
∑

edge(s,t)=1
1

rank(s)
; edge(s, t) indicates third-party t’s presence on site

s. This metric mitigates the distortion of a tracker’s importance due to the selection of a

small set of first-party sites (as in our case, 1050- 2050 URLs per country). Such a small set

of first-party sites may not include all first parties where a particular third-party is highly

prevalent.

Comparing countries. To compare the extent of tracking between countries, we treat the

prominence values of trackers of each country as a group, and we compute non-parametric

Kruskal-Wallis (KW) rank averages (assuming groups are independent). Countries with a

higher rank average should have a higher level of tracking and vice-versa. Furthermore,

the rank averages of all the countries can be used to perform the KW test to determine if

the level of tracking between countries is independent of each other or not. In a KW test,

a null hypothesis is initially assumed where all samples (i.e., groups) come from identical

populations. If the KW test value is greater than the critical chi-square value, the null hy-

pothesis is rejected, proving at least one group comes from a different population. A similar

approach was adopted by Fruchter et al. [113] for comparing tracking activities between

four countries.

3.3.3 Dynamicity of trackers

Since ad exchanges leverage a Real-time Bidding (RTB) auction based model where only

winning bidders are allowed to serve content to users [28, 128], web trackers are also
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expected to be dynamic in nature. However, dynamicity of trackers have not been discussed

in previous large scale measurement studies (e.g., [97, 113, 104]). To establish ground-

truth on the limits of dynamic behaviors of trackers, we conducted several experiments

with Alexa Top-1000 sites. We calculated the difference of the number of first parties for

each tracker as observed from two different ISPs within Montreal, Canada; we performed

12 tests simultaneously from both ISPs, and at different times of the day, over a period of

two months, where each test took approximately 4 hours to complete.

We use z-score5 to assess the variation of trackers; z-score measures the number of

standard deviations of the signed distance between a data point and the mean of a distri-

bution.6 If the data point is greater than the mean, the z-score is positive, otherwise it is

negative. Overall, z-scores for our observations lie between -0.4 and +0.4. For simultane-

ous runs from both ISPs, the differences and z-score values of the number of first parties

for the Top-5 trackers are: advertising.com (223, 0.36), pubmatic.com (192, 0.27), adsafe-

protected.com (140, 0.11), moatads.com (75, -0.09), scorecardresearch.com (68, -0.11).

Similarly, when measured from a particular ISP at different times, the differences and z-

score values for the Top-5 trackers are: openx.net (217, 0.39), googlesyndication.com (114,

0.05), adnxs.com (109, 0.03), gstatic.com (73, -0.09), yandex.ru (73, 0.09). These values

change when measured at different times, although the z-scores always remain within -0.4

and +0.4. We also computed the Pearson correlation coefficient for the number of first

parties that trackers are found in different runs (different ISPs, and at different times of the

day); our Pearson coefficient turned out to have a highly positive linear correlation (0.9),

implying that the trackers identified in independent runs follow a strong linear relationship.

Therefore, for the overall tracking ecosystem, the dynamicity of trackers does not appear

to have adversely impacted the interpretation of results of our measurement study.

5https://en.wikipedia.org/wiki/Standard_score
6Unlike standard deviation, z-score is used to compare scores from different distributions [245]. Also,

z-score determines whether a given value is typical in a data set.
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3.3.4 Ethical issues

We access residential users’ Internet connection through Luminati, which is a paid service.

We do not compromise the security or privacy of users (of exit nodes) beyond using their

internet connection, which they have agreed to when signing up with Luminati. These

users include those using Hola [139] clients and applications built leveraging the Luminati

monetizing SDK [180] without a subscription. Hola and Luminati explicitly mention the

sharing of internet connection to their users. Furthermore, we do not store the response

content returned by the websites, except the measurements for trackers.

Some websites that we crawl (Alexa top sites and Twitter-shared URLs) may be cen-

sored in a few countries. Other than Egypt,7 we are unaware of any place where attempts

to access blocked/censored content will trigger legal problems for a user. During our tests,

the new law in Egypt that threatens imprisoning those browsing censored web sites did not

exist. Besides, the sites crawled from Egypt are not subjected to censorship according to

the Citizen Lab dataset [62]. We are unable to get the consent from targeted users owning

Luminati exit nodes, as we do not have their contact information. However, we reached

out to the internal Research Ethics Unit of our University, and explained our experiments;

they did not object to our methodology and did not require us to go through a full ethics

evaluation.

3.3.5 Limitations

We use Luminati’s residential exit nodes for measuring web tracking from a home user’s

perspective. However, we have no control over such nodes (compared to using more reli-

able university/EC2 infrastructures). Here we list some issues that may affect our results.

(1) Web tracking may depend on the browsing history of a specific client as identified by its

7News article (Aug. 19, 2018): https://www.telegraph.co.uk/news/2018/08/19/
egyptians-face-jail-accessing-banned-websites/
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IP address. Thus our results may be influenced by the browsing history of the Luminati exit

nodes, which is beyond our control. This is an inherent limitation of using residential IPs

as opposed to university/Amazon IPs. However, our connections are not effected by local

cookies or other browsing data (only share the same IP address). (2) We crawl websites

via OpenWPM in a sequential order over the period of five weeks. Hence, time dependent

trackers (if any) may affect our results. Furthermore, the number of trackers on first party

sites may grow or shrink with time. This is due to many reasons, including technological

advancements of tracking techniques [173], outages, performance issues with tracking ser-

vices, and ISP filtering [31, 48]. A comprehensive study of such dynamic behaviors and

uncertainties of tracking at a global scale is beyond our scope as it requires repeated tests,

which is not pragmatic due to the high cost of using Luminati. However, we measured dy-

namicity of trackers via two ISPs from two locations, and found the impact to be limited to

our measurement criteria (see Section 3.3.3). (3) Tracking context of some Google trackers

(e.g., google.com, gstatic.com, youtube.com) are omitted from our work as they are not

proxied by Luminati. We realized this limitation during our experiments.8 However, most

Google-owned tracking domains remain unaffected, i.e., proxied through Luminati. We

manually verified this for all top tracker domains in our list. (4) The EasyList [92] filter that

we use to identify third party domains participating in a tracking context may not have ad-

equate coverage in all countries, although it can filter most trackers from international web

pages. Therefore, our results may not include trackers that are not identified by EasyList

rules. However EasyList offers several supplementary filter lists [93] to support several

non-English domains (e.g., German, Italian, Dutch, French, Chinese, Bulgarian, Arabic,

Czech, Slovak, Lithuanian and Hebrew). The coverage of these supplementary lists are

still unknown. (5) If a first party website intentionally uses a third party for tracking the

site visitors, we do not distinguish such trackers from other third parties participating in a

8Luminati prohibits “Any form of outbound automated Google search queries”, but mentions no other
Google related restrictions.
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tracking context.

3.4 Trackers vs. geolocation

In this section, we explain the analysis process followed by the results. Unless otherwise

stated, the tracking context is measured using third-party scripts on the Alexa Top-1000

global domains.

We first check the presence of top-10 trackers in Alexa Top-1000 domains in all coun-

tries. For brevity, we highlight the results from 15 countries with most significant differ-

ences across regions; see Fig. 2. The top-10 trackers are determined based on the average

percentage of first-party sites across 15 countries. If multiple instances of the same tracker

are found on a particular first-party site (e.g., several scripts from a single tracker domain),

we count them separately.
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Figure 2: First-party percentages for script-based trackers across 15 countries; Avg15 and Avg56
represent average percentages for the selected 15 countries and all 56 countries, respectively.

In Fig. 2, darker-shade trackers have more presence in first-party sites compared to
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lighter shade ones. We calculate the tracker percentages for each country based on the first

party count for the specific tracker over the total first-party count of the specific country.

Highest percentages for googlesyndication (25.6%) and doubleclick (23.2%) trackers are

observed in Russia and Ethiopia respectively; the percentages are relative to other trackers

observed from the same country. These two trackers are also prominent in all other

countries. In contrast, some trackers are not seen in certain countries (blank cells in Fig. 2).
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Figure 3: First-party percentages for tracking org.

China and Iran have a relatively low percentage of trackers. Google advertisements

are sanctioned in Iran by United States Office of Foreign Assets Control (OFAC) [129].

Schelter et al. [244] observed a similar pattern in their study, and they justify this behavior

due to political factors including lack of democracy and freedom of the press.

We also identify the top-10 tracking organizations; we use pywhois [192] to locate or-

ganizations from corresponding domains; see Fig. 3. Google has a clear domination across

the world. Note that despite Google services, e.g., Google Search, Maps, Docs, Mail being

censored in China [158], Google trackers remain active in China on uncensored websites.

34



3.5 Overall tracker prominence

In this section, we analyze the differences in tracking, using prominence and KW rank

metrics (Section 3.3.2), and compare 56 countries; see Fig. 4. UK and Armenia have the

highest prominence values, while Cuba, Ethiopia and Iran have the least. The latter coun-

tries are known to have less media/Internet freedom [25, 111]. Cuba [18], Ethiopia [65] and

Iran [52] are subjected to online censorship, where popular third parties (e.g., social media

resources such as Facebook) are blocked. Therefore, these censorship practices may have

contributed to the low number of trackers on sites from these countries. Countries such as

Morocco, Singapore, Venezuela, Mexico and Rwanda have relatively higher prominence

values although they rank low in media/Internet freedom, showing the presence of other

factors influencing tracking. We discuss the impact of few of those factors such as Internet

speed, censorship and browser user agents in Section 3.7.
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Figure 4: Prominence of tracker scripts across 56 countries.

We summarize prevalence of top trackers (in terms of the average of raw count in coun-

tries) in different regions in Fig. 5. In general, Europe has the highest count compared to

others, despite the EU cookie law. Degeling et al. [78] claims, GDPR didn’t have a notice-

able change in tracking although it made the web more transparent by having the website

owners updating their privacy policies.

Our results from the KW test show that the tracker prominence among different coun-

tries are independent of each other (x2 = 83.64, df = 55, p = 0.05). This is because the
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Figure 5: Average of top trackers in different regions.

null hypothesis of the KW test is rejected as the KW test value (x2 = 83.64) is greater than

the critical chi-square value (73.311) [189] with 55 degrees of freedom (df ), where p-value

(used to accept/reject the null hypothesis) is 0.05. Therefore, the prominence of trackers

varies with different browsing locations that are independent of each other.

Comparing prominence between home pages and Twitter URLs. We also compare

countries based on tracker prominence in Alexa Top-1000 home pages and Twitter-shared

URLs. For this experiment, we consider 10 countries across all regions. We calculate the

prominence values of trackers in each country for the home pages and Twitter URLs; see

Fig. 6.

210

220

230

240

250

260

270

280

290

300

310

GB AM BR HU SG CO MX IS US AU

P
ro

m
in

en
ce

 o
f 

tr
ac

ke
rs

Global Alexa sites Twitter URLs

Figure 6: Prominence of tracker scripts: Alexa global sites vs. Twitter URLs.

It is apparent that the prominence values of trackers in Twitter URLs are significantly

36



higher compared to home pages in all selected countries. Englehardt et al. [97] noticed a

6%–57% increase of third-party presence on first parties (for top 20 third parties) with inner

URLs as opposed to their home pages. In our experiments, the increase of prominence in

Twitter URLs is between 7%–28%. However, we take into account the prominence of all

third parties available. Therefore, it appears that increase of third party presence in inner

URLs is relatively higher for the top trackers.

Trackers in country-specific sites. Most trackers across the world are hosted from US

domains. However, similar to the observations in Falahrastegar et al. [104], we note an

exception from Top-50 country-specific first-party sites in China and Russia, where the top

trackers for both third-party scripts and cookies originate from the same country. In China,

baidu.com tops the first-party count in both tracking scripts (93) and cookies (5). Similarly,

in Russia, yandex.ru is a leading tracker having the highest first-party count for tracking

scripts (427) and cookies (25). The difference in approaches between Falahrastegar et al.

and ours is that in the former, 500 country-specific first party sites are used (from the same

location), while we use Top-50 country specific sites (from 56 countries); they report more

baidu.com count (approx. 2000), although they do not clarify the tracking context.

3.6 Cookie validity durations

Similar to Trevisan et al. [287], we also found that the EU cookie law is not complied

by most tracking companies in the EU and non-EU countries; see Fig. 7. Many cookies

have a validity period over 20 years, and some up to 7988 years (e.g., rubiconproject.com,

rfihub.com). Overall, UK and US have the highest counts of these cookies, while Iran,

Cuba, Ethiopia and Libya have the least. We did not use the data collected from Kazakhstan

for our analysis, as it is impacted due to slow connections at the respective exit nodes.

Trevisan et al. [287] found 49% of the websites in 25 countries (21 from EU) install

tracking cookies. In comparison, we found that, for the nine European countries, 60% of
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Figure 7: The number of cookies vs. validity period: counts of cookie validity periods ≤ 1 year are
shown by the line (left y-axis), and the rest (> 1 year) are shown with bars (right y-axis). All these
cookies are set without user consent.

Access country >1year >20 years
Great Britain 10,516 3618
Germany 5047 1956
Hungary 5071 1866
Italy 5000 1853
France 4250 1801
Estonia 2692 1267

Table 2: Number of tracking cookies with validity periods (EU).

first-party sites set tracking cookies without consent, which is even higher than our global

average (56.2% sites in the 56 countries; see Degeling et al. [78] for technical issues in

GDPR compliance and common cookie consent implementations).

In addition to third party cookies, some first party cookies (e.g., doubleclick.net, pay-

pal.com) contain unique pseudonymous identifiers, although they do not include Personally

Identifiable Information (PII) [20]. We did not find attributes in first party cookies contain-

ing any identifiable PII

The top-5 domains of tracking cookies with over a year validity are as follows (the

number of cookies, first-party percentages): scorecardresearch.com (23,171, 0.015%);

rubiconproject.com (12,680, 0.008%); rfihub.com (12,105, 0.008%); advertising.com

(11,042, 0.007%); and adtechus.com (9940, 0.006%). We also checked their privacy

policies (Sept. 2, 2018). They do not mention their cookie validity periods, but claim to
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Tracker domain Access country Reg. Count
smartadserver.com DE, EE, FR, GB, HU, IT FR 4005
angsrvr.com DE, FR, GB, HU, IT DE 1570
criteo.com EE, FR, GB, HU, IT FR 1461
ml314.com DE, EE, FR, GB, HU FR 920
theadex.com DE, EE, GB, IT FR 665
yieldlab.net DE, GE, HU DE 420
visualdna.com DE, GB, IT GB 417
semasio.net DE, GB DE 392
switchadhub.com EE, FR, GB, HU, IT GB 303
ligadx.com HU DE 280

Table 3: Domains of top-10 tracking cookies registered in EU countries.

be in compliance with EU privacy laws (including GDPR [100]). The opt-out mechanism

of scorecardresearch.com is also cookie based [247], i.e., opt-out is not possible when

cookies are blocked or deleted. Top-6 EU countries with the most number of cookies with

long validity periods are listed in Table 2. Top-10 EU specific domains with the highest

number of tracking cookies are listed in Table 3; for each domain, we also list the countries

from which the requests are originated, and the country where the third-party domain is

registered (most registered in France and Germany).

3.7 Factors other than geolocation

3.7.1 Internet speed

Tracking appears to vary proportionally with Internet speed in a country; see Fig. 8 (we

use Akamai’s report [8] on global Internet speed as of June 1, 2017). The countries right to

the vertical dotted line in Fig. 8 have a higher tracker prominence (marked red ▼). Tracker

prominence values are high for Armenia, Colombia, Lebanon and Uganda, although they

have relatively low Internet speed. Resource intensive tracking sources included in first-

party sites may not completely load with a slow connection, increasing the rate of request
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Figure 8: Internet speed vs. tracker prominence.

The failure rates of OpenWPM requests (following its re-connection attempts) vary

between 11.21% – 19.04%. The highest failure rates are in United States (19.04%), Great

Britain (18.26%) and Germany (18.13%). These countries still rank high in tracking promi-

nence. We also checked the connection failures more closely, and observed that such fail-

ures are more common for trackers than the first-party sites.
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Figure 9: KW Ranks highlighting errors of HTTP/S requests.

To understand the impact of HTTP/S errors on tracker prominence, we calculated the

difference of KW ranks of all HTTP/S requests vs. requests without client/server errors.
9The average webpage size is growing significantly, every year; in 2017, it is approximately 2.5MB, part

of which is attributed to trackers, see e.g., KeyCDN (https://www.keycdn.com/support/the-
growth-of-web-page-size/). For example, CNN’s home page size is 4.7MB and the page creates
349 HTTP requests (as of Sept. 25, 2018; tested using tools.pingdom.com).
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Fig. 9 shows the KW rank of requests with errors. Although the tracker prominence and

the rate of failures are not proportional in all 56 countries, the KW rank of request errors

are high in Great Britain (686), United States (673) and Mexico (576), while they are lower

in Uzbekistan (186) and Ethiopia (141).

3.7.2 Censorship

Apparently, there is a direct relationship between Internet/media freedom and tracking

prominence—more open countries seem to attract more trackers; see Fig 10 (for clarity,

we show only 15 countries, but a similar trend is observed for all 56 countries). We divide

the countries into three categories based on the 2017 Freedom of the Press rankings [111];

countries marked in red (�) are considered to be free, amber ones partially-free, and green

ones not-free. All the not-free countries have a lower tracker prominence. Note that, al-

though Ethiopia shows a higher percentage of trackers in Fig 3, those values are relative to

the country.
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Figure 10: Censorship rating vs. tracker prominence.

We also analyzed HTTP response codes. While there were many codes other than
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200 (OK), those with 403 (Forbidden Host) are interesting: majority of third parties in-

cluded in these first party sites appear to be hosted on local IP addresses (e.g., 10.10.34.34,

192.168.1.1). Other studies [25, 214] also reported similar behavior in Iran as ours (87

occurrences), where DNS hijacking is used for censorship; a blocked site is redirected to

a web page running on a local IP address that is accessible within Iran. In addition to

Iran [25], we also observe the same behavior with SA (173), UZ (46), NG (28), GB (22),

PK (19), TN (11), and US (9). Note that the 403 response code is also returned when

appropriate authorization is not provided (e.g., a non-public page).

3.7.3 Browser user-agents vs. tracking

A user-agent, as sent with an HTTP request, can help identify a user’s device, browser/OS

versions, and even a specific user (although not very accurately) [168]. Currently, Open-

WPM supports only Firefox. We modify OpenWPM with a list of user agents10 supporting

different browser/platform types. Considering four popular browsers—Chrome, Firefox,

IE and Safari, we use a total of forty user agents with different desktop OSes (Windows,

Mac OS X, and OpenBSD); a random user-agent is picked for each crawl. This allows an

unbiased approach in simulating requests made from different browsers (instead of sending

a series of requests with the same user-agent). We run the tests for each browser type at a

time (i.e., each browser type is tested equally).

We summarize prevalence of top trackers (scripts vs. cookies) for common browser

user-agents; see Figs. 11 and 12. Some trackers appear significantly more than the rest

across all user agents for Chrome, Firefox, IE and Safari—e.g., googlesyndication.com

and doubleclick.net in tracking scripts, and adnxs.com and rubiconproject.com in tracking

cookies. Surprisingly, some trackers do not appear at all for certain browser types. We

validated such unusual cases with manual inspection using Chrome DevTools 11, and similar

10Extracted from: http://www.useragentstring.com/pages/useragentstring.php
11https://developers.google.com/web/tools/chrome-devtools/
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Figure 11: Tracking scripts vs. user-agents.
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Figure 12: Tracking cookies vs. user-agents.

tools in other browsers (e.g., F12 Developer tools 12).

3.8 Data protection laws vs. tracking

We summarize below data protection laws in different regions and explain their relevance

to tracker prominence (see Section 3.5), based on DLA Piper [84]. Overall, countries with

higher tracker prominence also have relatively tougher data privacy regulations, implying

whether such regulations are properly enforced.

Asia Pacific. No specific laws or regulations exist relating to data privacy except in South

Korea (prominence score: 1466), with a fairly higher tracker prominence. In South Korea,

cookie, log and IP information usage is governed by IT Network Act, and requires to get

opt-out consent from users. Location information of users is regulated by the LBS Act.

Australia (1404) leverages its Privacy Act, state and privacy laws to regulate e-privacy and

the collection of location data to some extent.

Americas. Canada (1531), United States (1446) and Mexico (1504) have a higher tracker

prominence. On top of provincial laws, Canadian Personal Information Protection and

12https://docs.microsoft.com/en-ca/microsoft-edge/devtools-guide
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Electronic Document Act (PIPEDA) applies to consumer and employee personal infor-

mation. In the US, Federal Trade Commission (FTC) ensures businesses take reasonable

minimal data security measures to ensure consumer privacy. In contrast, South Ameri-

can countries (only Argentina and Uruguay are covered by DLA Piper) lack privacy laws,

which also have relatively higher tracker prominence values.

Europe. EU’s General Data Protection Regulation (GDPR) [100] is in effect since May

2018, governing all its member states alike. While the existing e-privacy directives in EU

are complied by its member states, there is no clear indication of any reduction in track-

ing activities due to these regulations. Although, France, Switzerland and Italy are more

strict in applying e-privacy laws compared to Germany, our results indicate France (1453)

and Switzerland (1460) have comparable tracker prominence as Germany (1450). Switzer-

land requires explicit consent from users before data is collected, and personal data (e.g.,

stored in cookies) is deemed to be sensitive. France requires traffic data to be anonymized

or erased, and not use location data without explicit consent. In Italy (1352), traffic data

is supposed to be removed when no longer required, and cannot be held for more than 6

months. According to UK’s (1645) Privacy and Electronic Communications (PEC) act,

traffic data needs to be erased when not required and can be used with consent for value

added services; nevertheless, UK has the highest tracker prominence.

Eurasia. Russia (1330) and Ukraine (1355) do not have specific privacy legislations, but

their tracker prominence values are lower than most countries.

Middle-East. Baharain’s (1463) tracker prominence is relatively high and it lacks any

privacy laws. Saudi Arabia (1196) also has no privacy rules. In UAE (1355), although its

penal code does not provision regulations for Internet privacy, the general laws contained

therein can be applied for online privacy. Both Saudi Arabia and UAE have lower tracker

prominence values. Tracker prominence in Egypt (1377) is also low; its 2014 constitution

provides clear guidelines on Internet security, but not about privacy. In 2017, the Egyptian
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government cracked down on encryption and circumvention tools [112].

Sub-Saharan Africa. Most countries in this region have a lower tracker prominence.

South Africa (1330) doesn’t appear to have laws to regulate privacy. However, Nigeria

(1317) has regulations for electronic communication/privacy rights with respect to cookies

and location data.

3.9 Recommendations

Although different countries may have regulations to protect privacy of users, there seem

to not have a process to effectively verify compliance to such regulations. In addition,

users can use privacy related browser extensions (e.g., ad blockers), or privacy browsers

(e.g., Tor [285]), to safeguard their privacy from tracking, although they may not guarantee

perfect privacy. The users in countries subjected to censorship, can use Virtual Private

Networks (VPN), proxy servers and privacy browsers, to avoid from being eavesdropped

or tracked from state actors or commercial entities.

3.10 Summary

We observe a significant variation of trackers on first-party sites between countries. Some

Google trackers (e.g., doubleclick and googlesyndication) on average have an extensive

presence compared to other trackers (cf. [166]). The UK and Armenia have the highest

tracking prominence, while Ethiopia and Iran have the least. We observe a significant

number of cookies valid for many years (>20) in EU countries and elsewhere. Several other

factors also influence tracking beyond location. The countries that enjoy a greater freedom

of expression and information flow show a stronger presence of trackers. We also noticed

several third-party requests are censored in Iran and few other countries. Countries that are

subjected to censorship, attract less trackers on websites browsed from those countries. We
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also observe inner URLs of websites, have a higher tracker prominence (7-28%) compared

to that of corresponding home pages, and the prominence of trackers in inner URLs varies

with geolocation. In addition, countries in the European Union have the highest count of

trackers, compared to other regions. Also, in general, having stronger privacy regulations

does not limit tracking in any significant way — e.g., influence of GDPR on tracking has

not been completely effective.
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Chapter 4

Privacy analysis of government websites

and mobile apps

4.1 Introduction

Tech giants such as Google, and Facebook constantly track online user behaviors to provide

a better user experience, and more importantly, to improve user profiles that they curate for

monetization, e.g., via advertisements. Users are aware of, and to some extent reluctantly

submit themselves to such inevitable tracking on commercial websites, to get the so-called

“free” services. In contrast, one may not expect commercial trackers on government web

services as those are directly funded by the tax-payers’ money. Indeed, government sites are

frequently used and highly trusted by users [218, 283]. Citizens use government websites

and mobile apps to perform their civic obligations (e.g., taxes), query public services (e.g.,

waste disposal), and browse for important information (e.g., HIV, pregnancy, COVID-19).

Tracking on these services could be quite revealing due to their sensitive nature [200]. If

combined with user profiles on commercial sites, such tracking can make it easier to manip-

ulate real-world user behaviors (cf. voting as targeted by Cambridge Analytica [309]). se-

curity of users; e.g., past attacks used government sites to distribute malware, ransomware,
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run a botnet and cryptocurrency mining [220, 257, 295, 150, 277].

Privacy implications of web tracking have been extensively studied. Englehardt et

al. [97] developed OpenWPM for large-scale evaluation of web tracking, and found Google,

Facebook, Twitter and AdNexus trackers on more than 10% of Alexa top 1 million web-

sites [13]. Privacy and security measurement studies (e.g., web tracking, HTTPS) also used

sites published by Alexa, Tranco [170] and Cisco Umbrella [61], obviously due to the pop-

ularity of those top sites. However, only 9.07% government sites are present in commonly

used top-million website lists [256], as government sites are used by a geographically-

confined population.

Studies specifically targeting government websites (e.g., [99, 284, 14]), either focused

on a specific country, or did not consider security and privacy issues in their evaluation.

Recently, Singanamalla et al. [11] measured the HTTPS adoption errors and misconfigura-

tions on government websites. In terms of tracking, a 2019 Cookiebot report [66] identified

that 89% of EU government websites (e.g., nhs.uk, gov.uk) from 28 countries contained ad

trackers (82% of which were from Google). However, a global perspective on commer-

cial trackers on government services is still missing, even though governments across the

world are increasingly making their services available online, especially during the current

COVID-19 pandemic situation.

In this work, we perform a large-scale privacy and security measurement study on gov-

ernment services, using 150,244 unique government sites from 206 countries [307] and

1166 Android apps from 71 countries. We consider a website belongs to a government,

if the domain name of the corresponding nameserver (ns) or mail exchanger (mx) record

pertains to that government. We use a semi-automated methodology to identify 121,846

unique government domains, which we then complement with an additional 109,603 gov-

ernment domains from Singanamalla et al. [256, 151] (totalling 231,449 distinct domains).

We then crawl the landing pages from these domains using OpenWPM [97] and measure
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tracking prevalence on them; a total of 150,244 domains were successfully crawled (81,205

domains were inaccessible or inactive at the time of our crawl). We leverage the content

saved from government websites to identify Google Play URLs and download 1166 gov-

ernment Android apps (after filtering non-government apps). To understand security and

privacy exposure of these apps, we use both static analysis (MobSF [196], LiteRadar [182]

and Firebase scanner [238]), and dynamic analysis techniques (using a Samsung S5 phone,

with Google UI/Application Exerciser Monkey). However, we limit the security evaluation

of government services due to possible legal and ethical issues. In addition, we scan all

government and tracking (script/cookie) domains, and government Android APKs using

VirusTotal [298] to determine the possible inclusion of malicious content in government

websites/apps.

We characterize widespread tracking on government services as a betrayal by the gov-

ernments, specifically when some jurisdictions (e.g., EU, California) have explicit laws

(GDPR [100], CCPA [263]) to restrict tracking on commercial sites. Similarly, the breach

of trust from compromised/malicious government apps [75] is also real.

Contributions and notable findings. We develop a comprehensive framework for col-

lecting government sites and Android apps, and a test methodology for evaluating them,

primarily focusing on privacy exposure. Our main findings include:

1. Although governments can completely prevent tracking on their online services, we

found widespread use of commercial trackers on government websites and apps. Un-

surprisingly, major trackers that are present on the regular web (cf. [243]) also dom-

inate on government services—e.g., Google trackers are on both government sites

(17%) and Android apps (37%). There were tracking cookies set to last for a long

time—13% (19,566) of government sites contain YouTube cookies with an expiry
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date in the year of 9999. These trackers are primarily due to the inclusion of com-

mercial content (e.g., Google maps) on government sites, and the use of analytic li-

braries in apps. Privacy policies of 23 (out of a selected set of 227) government sites

do not mention the use of any tracker. Whether explicitly mentioned or not in policy

documents, these trackers can definitely correlate user activities across commercial

and government services.

2. Government services from regions with strong privacy regulations such as the EU

countries and the state of California (crawled from a localized VPN), also contain

a lot of trackers, apparently violating their own regulations (GDPR and CCPA, re-

spectively). For example, 49% (953/1942) and 69% (306/444) of EU and California

government websites include known tracking scripts, respectively. These sites also

include known tracking cookies with long validity periods; e.g., a total of 35 sites

from both regions include known tracking cookies that are valid for 7984 years. Note

that our crawler does not click on the cookie consent prompts, if present.

3. Surprisingly, there are government services that are potentially malicious, or load

content from domains labelled as malicious as per VirusTotal (see Sec. 4.4.5); 304

government sites and 40 governments apps are labelled as malicious. In addition,

21 tracking domains (19 included in 377 sites, 2 included in 2 apps) are labelled as

malicious.

4. Several government apps leak privacy/security sensitive information to trackers, or

any network attacker. Examples: 23.1% (269/1166) of the apps expose device data

(e.g., device model, device ID) to trackers; 7 apps send user login information in

cleartext; 11 apps include hard-coded user/admin credentials and API keys; and 30

apps expose their unprotected Firebase datastores (apparently including confidential

and personally identifiable information).
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5. Sensitive user or government data may cross jurisdictional boundaries due to the use

CDNs and hosting providers. Notable examples: US/Delaware’s election website

elections.delaware.gov is hosted in the UK, Australia’s army.defencejobs.

gov.au and Somalia’s centralbank.gov.so, as.parliament.gov.so

are hosted in the US.

6. We found 23 government sites from 7 countries include FullStory [114, 2] third-party

script, which is used to collect the full user session (e.g., for debugging, replaying).

Moreover, 5 sites expose user information (e.g., email address, search terms) to Full-

Story, although FullStory can be configured to limit such exposure.

We disclosed our findings on the leakage of user/admin credentials and API keys to the

developers of those 11 government Android apps, but received only one response after

several months (we also made several follow ups). We also reported 8 government websites

flagged as malicious (by at least 5 VirusTotal engines) to site administrators/contacts of

those sites, but received no response. Furthermore, we reported 38 government Android

apps flagged as malicious (by at least by 1 VirusTotal engine, as the number of apps is

smaller compared to government sites) to its developers, but only one developer reached

out to us.

4.2 Related work

Tracking on popular websites. There exist a significant number of papers (e.g., [97, 241,

113, 183, 104, 78, 28]) on web tracking on popular websites. Englehardt et al. [97] devel-

oped the OpenWPM framework [223] to measure the prevalence of tracking on websites

at a large scale. OpenWPM can measure both stateful (third-party scripts and cookies),

and stateless (fingerprinting) tracking. Englehardt et al. found that only a few third-party
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tracking and advertising scripts (i.e., Google, Facebook, Twitter, Amazon, AdNexus, Ora-

cle) were present in more than 10% of the top-1M Alexa sites. Their findings also include

the use of sophisticated fingerprinting techniques (e.g., WebRTC-based, AudioContext,

Battery API) in top-1M Alexa sites. The additional functionalities offered by HTML5

APIs increased the effectiveness of browser fingerprinting techniques [122]. Previous

work [241, 113, 104] has also studied web tracking using popular Alexa sites from a global

perspective, and found differences based on geo-location and other factors (e.g., availabil-

ity of data privacy policies, laws, censorship, surveillance). Hu et al. [145] found 80% of

Alexa top-2K global sites contained Google trackers. Karaj et al. [160] found third-party

Google scripts in 82% of web traffic (measured using crowd-sourcing efforts). Sanchez-

Rola et al. [242] observed Google tracking cookies on 93% of popular sites (on the Tranco

list). We use existing methodologies and tools (e.g., OpenWPM) to specifically study com-

mercial trackers on government sites from across the world; 91% (123,115/135,408) of

these sites are not ranked in popular lists (e.g., Alexa, Cisco, Tranco).

Tracking consent solutions. Online tracking consent solutions, such as Cookiebot [66],

assist website owners to manage tracking activities (i.e., detect and block trackers until a

user grants consent), and ensure that web tracking complies with existing data protection

regulations such as the EU GDPR. Websites integrated with Cookiebot present cookie con-

sent banners to record user preference (accept/reject cookies). Cookiebot can also measure

tracking on a given website (without an integration), and was used to analyze government

websites from the 28 EU member countries; over 100 unique trackers were found. Many

of these trackers were from Google (82%); only Spanish, German and Dutch government

sites did not contain any tracker [29]. We found that all countries in the European Union

had known tracking cookies on the analyzed government websites (291 unique trackers in

total). Websites also actively take measure against users who choose not to allow cookies,

e.g., by deploying aggressive browser fingerprinting techniques (see e.g., [212]). We focus
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on governments across the globe, and study the presence of commercial trackers on gov-

ernment sites, and also evaluate privacy and security issues in government Android apps.

Tracking in mobile apps. Due to the popularity of mobile apps, they also have been

analyzed for privacy and security issues in the recent past, with a focus on the increasing

use of tracking SDKs. Reuben et al. [34] studied 959,000 apps from US and UK Google

Play stores, and found that third party tracking follows a long tail distribution dominated by

Google (87.75%). Nguyen et al. [199] performed a large-scale measurement on Android

apps (no mention of government apps) to understand violation of GDPR’s explicit consent.

The authors found 28.8% (24,838/86,163) of apps sent data to ad-related domains without

explicit user consent. Several recent studies (e.g., [237, 56]) also analyzed COVID-19

tracing apps, and highlighted privacy and surveillance risks in these apps. In contrast, we

target 1166 government apps of various types (including COVID-19 tracing apps) from 71

countries and territories around the globe.

HTTPS inconsistencies on government websites. There have been numerous large-scale

studies on HTTPS/TLS in general. Singanamalla et al. [256] conducted the first mea-

surement study on the HTTPS adoption in 135,408 government websites, and found a

lower adoption rate (39%) compared to commercial websites; we also found similar results

(61,679/150,244, 41%).1 They also observed the prevalence of HTTPS adoption errors

(e.g., the use of insecure cryptographic protocols and keys) on these sites.

Privacy and security issues on government websites. Lapses in government websites

that lead into privacy and security issues have been studied for specific countries. Cson-

tos et al. [70] found 52% of the analyzed Hungarian public sector websites used outdated

server software versions and programming language releases; less than half of those web-

sites used HTTP. The office of the auditor general in Western Australia [205] found 328

1Note that as of September 2021, according to the Google Transparency Report (https://
transparencyreport.google.com/https/overview?hl=en), 95% sites are now loaded over
HTTPS on Chrome.
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weaknesses in information technology processes (e.g., information security, IT operations,

business continuity) used by 50 local government entities, out of which 10% were rated

as significant. We focus on finding privacy and security issues (e.g., third party tracking,

inclusion of content from malicious domains) of government services across the world.

4.3 Methodology

In this section, we first provide details of our government website and app collection

methodology. Then, we detail our privacy analysis and measurement techniques for the

collected websites and Android apps; see Figure 25 for an overview of our methodology.

For websites, we define known trackers as the third parties (e.g., script/cookies on first-

party websites) blacklisted by EasyList and EasyPrivacy [92] filtering rules; we define the

rest as unknown trackers. We count trackers sharing the same domain name with different

sub-domains separately. Furthermore, we define Android SDKs identified as trackers by

MobSF [196] as known trackers.

4.3.1 Collecting government sites and apps

We compile a list of government websites from 206 countries and territories by initially

using a seed list, and then refining and extending it via automated searching and crawl-

ing (between July and October, 2020). We then augment our list with the website dataset

from Singanamalla et al. [256, 151]; note that our site collection methodology was de-

veloped independently. We list the regions, and the count of government websites (in

countries/territories of the corresponding regions) used in our study in Table 4.

Preparing the seed list. We begin by extracting an initial seed list of 14,861 govern-

ment websites using several known sources [116, 83, 181], after removing obvious non-

government entities (e.g., political parties). To eliminate any remaining non-government
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Region # websites
Africa 4586

Asia 60,357

Central America 2506

Europe (Non-EU) 15,148

European Union 16,681

Middle East 3209

North America 23,934

Oceania 6588

South America 15,939

Caribbean 1296

Table 4: List of regions and government website counts (countries are grouped in regions based on
the categorization in [154]).

sites, we use nslookup [81] to query the nameserver (ns) and mail exchanger2 (mx)

records for each site. We then check for unique top-level domains and second/third level

domains as used by various governments [306]; we then eliminate the sites that do not

contain these domain suffixes in ns and mx records.

Extending the seed list. We extract the suffixes from the seed list and prepare a Google

dork [250] (e.g., site:“gov.uk”) for each country. Then we use googler [315] (a command

line Google search tool) to perform Google search on each Google dork and extract the

search results, which may contain new domains and sub-domains. Then, we remove non-

government domains from search results as explained in the previous step. We collected a

total of 56,766 unique government domains/sub-domains at the end of this step.

Deep crawling to scrape inner-links. Since landing pages and inner pages of government

domains collected in the previous step may contain links to other government sites, we

perform a deep crawl to scrape links in the HTML page source, up to a depth of 4 levels.

For this purpose, we use Hakrawler [167], that can find links in page source and the associ-

ated JavaScript files of crawled URLs. We randomize the URLs fed to Hakrawler to avoid

generating a large amount of traffic to any particular web server hosting government sites.

Hakrawler crawls only the web content hosted on government domains/sub-domains —

2Some government domains appear only in mx records.
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Figure 13: Overall methodology: website and Android app collection, tracking measurement on
websites, and privacy and security analysis techniques used on apps.

i.e., it does not crawl any external websites (e.g., social media sites). For all links collected

up to a depth of 4 levels, we filter out the following: links to common file extensions (e.g.,

docx, pdf, xls); links to social media websites; non-responsive links using curl [82]; do-

mains not ending with known suffixes of government domains. After filtering, we obtained

15,214,100 URLs from 121,846 unique government domains. For each domain’s landing

page, we use curl to save the page source, which is later used to extract Google Play store

URLs of government apps.
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Complementing websites from Singanamalla et al. We add 135,416 government web-

sites from Singanamalla et al. [256, 151] (collected using a different methodology includ-

ing crowd sourcing via Amazon MTurk). After eliminating the overlaps, we had a total

of 231,449 government websites, and we finally used 150,244 websites as the rest were

unreachable (for various reasons, including unresponsive or unreachable servers). The top-

10 countries with the highest number of websites in our dataset have a cumulative of 60%

(90,047/150,244) — e.g., US (22,506, 15%), China (12,583, 8.4%), Bangladesh (12,258,

8.2%). We observe that 8.6% (12,873/150,244) domains of government websites make it

into the Tranco [170] top-1M websites (cf. 9.07% in [256]). We manually verify our gov-

ernment website dataset (with a limited sample size of 100, selected randomly) to ensure

false positives are eliminated. We summarize the regions and website counts in Table 4.

Government Android apps. Government apps do not follow a common package naming

convention. Therefore, we look for URLs relating to Google Play store (i.e., https://

play.google.com) in the page source of government URLs saved for each country.

However, not all such Google Play store URLs point to government apps (some third-party

apps are also linked). We run each Google Play URL with the curl command to fetch devel-

oper email, developer website and privacy policy website URLs. We label a Google Play

URL as a government app URL in the following cases: (i) the developer email, or developer

website/privacy policy URL contains .gov.; (ii) the developer website/privacy policy URL

appears in the list of our government websites. Then for each of the government Google

Play store URLs (a total of 1566), we attempt to download the app using gplaydl [228]. A

significant number of Android apps failed to download as they are region-locked. In the

end, we collected 1166 government Android apps from 71 countries. The top-10 countries

with the highest number of government Android apps in our dataset have a cumulative of

641 (out of 1166, 55%) apps — e.g., India (95, 8.1%), Australia (92, 7.9%), Indonesia (91,

7.8%).
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4.3.2 Measurement of trackers on government sites

We configure the OpenWPM [97] web privacy measurement framework to launch 15 par-

allel browser instances in headless mode. To simulate the first visit to a website, we clear

the browser profile after each URL visit. We use two Azure VMs running Ubuntu server

18.04 LTS, 4vCPUs, 16GB RAM, 30GB SSD, and a physical machine running Ubuntu

18.04 LTS, Intel Core i7-9700K, 8GB RAM, 1TB HDD for our OpenWPM measurements

between Nov. 5–9, 2020. A total of 150,244 websites were successfully crawled by Open-

WPM (out of 231,449), and the rest (81,205) were unreachable during our crawl (e.g.,

website no longer exists, SSL/TLS errors, name resolution failure, disconnection by the

remote-end, timeout).

The instrumented tracking metrics from OpenWPM which include HTTP request/response

of both the landing page and associated third party scripts, third party cookies, fingerprint-

ing API calls, call stack information of web requests, and DNS resolution information are

saved to a SQLite database. The saved information in OpenWPM contains both stateful

(i.e., scripts and cookies) and stateless (fingerprinting) forms of metrics. We then check the

saved tracking scripts and cookies for third party domains; i.e., domains of scripts/cookies

that do not match the domain of the government site that they are on. We also study the

known tracking scripts to find techniques used for other purposes such as session replaying

and web analytics (which also could directly aid user tracking).

In order to find the correlation between privacy regulations (i.e., GDPR [100], CCPA [263])

and tracking, we separately run OpenWPM with 444 California government websites (from

a VPN in California), and 1942 European Union government websites (from a VPN in the

Netherlands). Note that our initial OpenWPM measurements are not done using VPNs.

Our OpenWPM automation does not interact with crawled government websites, e.g., to

accept or reject the cookie banners on EU sites. Therefore, our automation does not accept

cookie banners on sites crawled.
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4.3.3 Malicious government and tracking domains

We scan domains of all known tracking scripts/cookies in government domains (150,244),

and government domains with VirusTotal to check if any of these domains are labelled as

malicious. Note that, at least in some cases, VirusTotal engines3 may misclassify or delay

in updating domain categorization labels [217]. Therefore, to improve our labelling, we

also automatically collect and use domain categories (e.g., phishing, malicious, spam, and

advertisements, as assigned by different anti-virus engines), and community comments in

VirusTotal4 (sometimes with links to detailed analysis).

4.3.4 Android apps analysis

Tracking SDK detection. We use Mobile Security Framework (MobSF [196]) to find

tracking SDKs embedded in government apps (via static analysis). We load each app to

the MobSF server, scan it using the MobSF REST API, and download the JSON formatted

results, which include known tracking SDKs, and strings with sensitive data and dangerous

permissions [21] (e.g., camera, contacts, microphone, SMS, storage and location) used by

the apps. We then use LiteRadar to find the purpose of the included tracking SDKs (e.g.,

Development Aid, Mobile Analytics). Finally, we store these results in a local database for

our analysis.

Misconfigured Firebase database. Many Android apps, including government apps, use

Google Firebase [126] (a widely used data store for mobile apps) to manage their back-

end infrastructure. However, due to possible misconfiguration, Android apps connected to

Firebase database can be vulnerable (see e.g., [41]). Exposed data from Firebase vulner-

abilities includes personally identifiable information (PII), private health information and

3https://support.virustotal.com/hc/en-us/articles/115002146809-
Contributors (we exclude CRDF and Quttera for their unreliable results as we observed).

4We used the VirusTotal API to extract community comments — see https://developers.
virustotal.com/v3.0/reference#comments. To analyze the the community comments on mali-
cious behaviour, we matched them with pre-determined keywords (e.g., phishing)
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plain text passwords [40]. Firebase scanner [238] is used to find Firebase vulnerabilities of

an app (if exists). We run the Firebase scanner [238] on each APK file, which identifies the

vulnerable Firebase URLs; we then download the exposed data from the Firebase datastore

URL5 and check for apparent sensitive and PII items, including: user/admin identifiers,

passwords, email addresses, phone numbers. However, for ethical/legal considerations, we

do not validate the leaked information (e.g., login to an app using the leaked user/admin

credentials). Then we remove the downloaded Firebase datastore. We also promptly notify

the developers of affected apps.

Dynamic analysis. We use a rooted Samsung S5 neo mobile phone with Android 7. We

restrict only newly installed apps to proxy the traffic via mitmproxy [194] using Proxy-

Droid [131], to avoid collecting traffic from system and other apps. A mitmproxy root

certificate is installed on the phone. We also installed mitmproxy on a separate desktop

machine to collect and decrypt HTTPS traffic. Both the desktop machine and phone are

connected to the same Wi-Fi network. We use adb [123] to automate the installation,

launch, and uninstallation of the apps. We also use Monkey [124] with 5000 events (e.g.,

touch, slide, swipe, click) for each app. The network traffic is captured and stored in pcap

files. We use the captured network traffic to determine sensitive information (e.g., device

identifiers sent to trackers, leaked hardcoded user/admin credentials and API keys) sent to

external entities. We close mitmproxy and uninstall that government app before moving to

the next app.

Malicious domains and apps. We scan the APK files of 1166 government Android apps

with VirusTotal. We also scan domains included in apps (as found in the network traffic)

with VirusTotal.
5The URL is of the form <Firebase project name>.firebaseio.com/.json (e.g., https://mi-senado-

colombia.firebaseio.com/.json).
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4.3.5 Ethical considerations and limitations

During deep crawling to scrape inner-links to other government sites, we randomize the

URLs fed to the crawler, to avoid generating a large amount of traffic to any web server

hosting a government site. We do not use the sensitive information (e.g., user identifiers

and passwords) extracted from static and dynamic analyses of Android apps for any in-

trusive validations that may have an impact to the privacy of users. In addition, we did

not retain any data from exposed Firebase databases. We also reached out to the internal

Research Ethics Unit of our University, and explained our experiments. They approved our

methodology without requiring a full ethics evaluation. We also kept them informed about

our findings and contact attempts with app developers.

Obviously, our dataset does not include all the government websites and apps available

throughout the world. Furthermore, during our crawling process, we may not have encoun-

tered all trackers that are time dependent [241]. We use EasyList/EasyPrivacy [92] to filter

third parties (e.g., trackers, advertisers) in government websites. Some of these filtered

third parties may operate in an advertising context and may not necessarily track users,

or vice-versa. It is also possible that third parties blocked by EasyList rules perform the

dual role of advertising and tracking. However, the presence of third-party ad/annoyance

domains is not expected on government sites as government services do not rely on ad

revenue. Also government websites may intentionally use third-party scripts for track-

ing/analytics, and we still label such activities as tracking, as there is no technical bar-

rier for these third-parties to use analytics data also for tracking/profiling. Determining

the geolocation using IP address (see Section 4.4.7) may not be accurate in some cases

(e.g., CDN-fronted websites, non-CDN websites with multiple regional servers behind a

load-balancer). However, this is less of a concern for our country-level attribution; e.g.,

Gharaibeh et al. [120] reported 95.8% accuracy for country-level IP-geolocation. We
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crawled government sites from a location outside of their home countries, except for gov-

ernment sites pertaining to the country where the crawler is located (i.e., Canada, the

Netherlands, California). Government sites of some countries (e.g., Egypt, Iran), may

not properly function when accessed from outside of the country. Also, we particularly

focus on Android apps due to its larger market share, and do not consider iOS apps for

this work.6 Android apps with obfuscated code may have impacted our static analysis, but

not so on our dynamic analysis. In addition, during the dynamic analysis of apps, we did

not collect traffic for those apps using SSL pinning (as we could not automatically perform

un-pinning).

We involve manual steps in our methodology for verification, only when automation

is unreliable or challenging (e.g., verify websites crawled pertain only to governments), to

ensure that our results are reliable.

4.4 Results: Government websites

In this section, we summarize our main findings on tracking and security issues on govern-

ment sites.

4.4.1 Third-party tracking scripts

We found 29.9% (44,880/150,244) of government websites had one or more known trackers

on their landing pages, and a total of 748 unique known trackers (524,906 total known

trackers). The most common known trackers were youtube.com (19,565, 13% of websites),

doubleclick.net (19,339, 12.9%) and google.com (5478, 3.6%), all owned by Alphabet; see

Figure 14 for the top-10 known trackers. Note that YouTube videos and Google maps are

often present on government sites.

6As of August 2021, according to one estimate, Android has 72.7% market-share worldwide (https://
gs.statcounter.com/os-market-share/mobile/worldwide).
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We also compared the presence of third party scripts (known trackers) by country; see

Figure 15. China had a high number of government sites with known trackers (5394 sites

with known trackers, out of a total of 12,583 sites, 42.9%). Russia (1623/1818, 89.3%) and

Tajikistan (10/11, 90.9%) also had a high percentage of government websites with known

trackers.
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Figure 14: Top-10 known third-party tracking script sources on government sites — the bars show
the number of government sites with trackers (vertical axis to the left), while the line chart shows
the number of occurrences of trackers (vertical axis to the right).

We evaluated the percentages of government websites with known third-party tracking

scripts for countries in different regions — see Figure 18. Notably, government websites

in countries in the European Union have a relatively low percentage (14.1%) of tracking

scripts, perhaps due to GDPR (although this number should be zero as per GDPR require-

ments). However, 49% (953/1942) European Union government websites include known

tracking scripts, compared to 69% (306/444) of that of California government websites —

see Section 4.4.2. We also compared the known trackers and unknown trackers hosting

tracking scripts per geographic region — see Figure 17. The proportion of known trackers

is high in Africa (25,394 from a total of 27,941 trackers, 90.9%), while in South America,

the proportion of unknown trackers is high (40,247/101,259, 39.7%).

Session replay by FullStory third-party script. We found some government sites in

Poland (11), Mexico (1), New Zealand (1), Saudi Arabia (2), Australia (3), United States
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Figure 15: Heatmap of percentage of government websites with known tracking scripts in different
countries (countries in white had no trackers).

Figure 16: Heatmap of percentage of government websites with known tracking cookies in different
countries (countries in white had no trackers).
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Figure 17: Proportions of third-party scripts (known trackers vs. unknown trackers) on government
sites per region.

(4) and Ukraine (1) include the FullStory [114, 2] third-party script (fs.js). This script

attaches event listeners to capture various events, including: button clicks, mouse move-

ments, scrolling/resizing of windows, touch events in mobile browsers, key presses, page

navigations, and network requests; all recorded events are then sent to FullStory servers.

The script offers privacy options to exclude specific page elements with sensitive informa-

tion (e.g., passwords, credit card numbers) to be collected/sent to FullStory servers. How-

ever, several government sites do not leverage these options, and thereby expose sensitive

user information to FullStory. Examples include: my.nzte.govt.nz exposes a user’s

first/last name, email address during account creation; durangodigital.gob.mx ex-

poses email address during login; several sites (e.g., rockvillemd.gov, connection.

homebaseiowa.gov, nassauparadiseisland.com) expose search terms to Full-

Story; and several sites (e.g., eservice.sba.gov.sa, mybusiness.service.

nsw.gov.au) also send browser fingerprinting information (e.g., ScreenWidth, Screen-

Height), and links clicked by users to FullStory. In contrast, parliament.vic.gov.

au blocks sending search terms to FullStory.
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4.4.2 Trackers on EU and California government sites

As more services are going digital, and many commercial entities’ sole business model

is based on profiling users, at least some governments are apparently starting to take user

privacy more seriously. They are also enacting regulations to impose significant penalties

to commercial online service providers for the violation of data privacy and security mea-

sures, which include: unnecessary data collection, tracking without consent, and failing to

protect personal data. Prominent regulations include: the EU General Data Protection Reg-

ulation (GDPR) [100], California Consumer Privacy Act (CCPA) [263], Virginia Consumer

Data Protection Act (CDPA) [297], Personal Data Protection Guidelines for Africa [153],

Canadian Personal Information Protection and Electronic Documents Act (PIPEDA) [135]

(and the newly proposed legislation [134]). Ironically, many governments fail to lead by

example as apparent from our results. In this section our emphasis is on the impact of

GDPR/CCPA on tracking.

European Union. All websites must comply with GDPR [100] when accessed from any

EU member state. GDPR is an opt-in privacy regulation (e.g., user consent must be ob-

tained before tracking them). We found 49% (953/1942) EU government websites include

known tracking scripts; note that we visit these sites via OpenWPM from a VPN in the

Netherlands. Most tracking scripts (524, 27%) on these sites are served by Google, fol-

lowed by Facebook (54, 2.8%), Cloudflare (24, 1.2%), and Twitter (23, 1.2%). We also

observed companies (e.g., CookieLaw and Cookiebot) that provide solutions (e.g., provi-

sion of cookie banners) to adhere to GDPR, included scripts on EU government websites

that are categorized as trackers by EasyList/EasyPrivacy [92]. Notably, 24 (out of 1942)

government sites (e.g., Germany, Lithuania, Denmark) include tracking cookies that are

valid for 7984 years; see Table 5.

California websites. Websites accessed from California are subjected to CCPA [263, 63],
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Validity period # sites Example trackers
7984 years 24 iteimproveanalytics.

io, snoobi.com,
nr-data.net

16 years 1 trafic.ro
1 – 5 years 27 statcounter.

com, omtrdc.net,
adverticum.net

3 – 6 months 11 pubmatic.com,
innovid.com

Table 5: Cookie validity periods on EU government sites.

which is an opt-out privacy regulation. For example, CCPA does not require websites ac-

cessed from the state of California to provide explicit cookie consent (unlike GDPR). We

observed 306/444 (69%) California government websites include known tracking scripts,

mostly from Google (163/444), followed by CivicPlus and Microsoft (each 22, 5%), Siteim-

prove (13, 2.9%), and Facebook (11, 2.5%). Note that we crawled these sites from a VPN

located in California. We also found website design companies serving governments (e.g.,

CivicPlus, Revize) included tracking scripts in government websites. In addition, 11 (2.5%)

California government sites set cookies that are valid for 7984 years; see Table 6.

Validity pe-
riod

#
sites

Example trackers

7984 years 11 siteimproveanalytics.
io, rfihub.com,
nr-data.net

10 years 1 webtrendslive.
com

1–2 years 15 stackadapt.
com,
scanscout.com,
rubiconproject.
com

1–6 months 7 krxd.net,
demdex.net

Table 6: Cookie validity periods on California government sites.
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4.4.3 Third-party cookies

We found many third party persistent cookies (i.e., cookies that do not expire after a ses-

sion) set by known trackers, with varying validity periods; see Table 7. YouTube is the most

common tracking cookie set in a large number of government sites (56,444 out of 150,244

government sites, 37.6%). About 11.5% (17,312) of government sites included cookies set

by YouTube that expired within a month. YouTube cookies on 13% (19,566) of govern-

ment sites are set to expire in the year 9999. Cookies set by YouTube are used to associate

site visits with a Google account (if logged in) and contain information on browsing be-

haviours of users [312]. Also, doubleclick.net cookies on government sites (18,219, 12%)

were set to expire between 1-5 years. 14 known trackers set cookies with over 5-year ex-

piry periods; these trackers provide services in sectors including: ads/analytics (nr-data.net,

cnzz.com, rezync.com, bitrix.info, 51.la), business (gemius.pl, pixlee.co), social network-

ing (twimg.com, ok.ru), travel (sinoptik.ua), news (cctv.com) and file sharing (radikal.ru).
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Figure 18: Known trackers (third-party scripts/cookies) on government sites by region.

We found government websites in 112 countries set known tracking cookies on all

of its websites (20,558/150,244, 13.7%). The percentage of government websites setting

known tracking cookies is over 80% in 170 (out of 206) countries; see Figure 16 (also Fig-

ure 18 for region-specific prevalence of these tracking cookies). The lowest percentage of
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government websites with known tracking cookies was from North America (5783/7681

websites, 75.3%). The US government sites had the lowest proportion known tracking

cookies (5417/7314, 74.1%), in part possibly due to California Consumer Privacy Act

(CCPA) [263]. In contrast, despite GDPR [100], the percentage of government websites

with known tracking cookies in the European Union was very high (2306/2355, 97.9%).

Cookie expiry

Tracker # sites > 1m & ≤ 1y > 1y & ≤ 5y > 5y
youtube.com 56,444 19,566 0 19,566
doubleclick.net 37,632 50 18,219 18
google.com 7731 5439 130 1
yandex.ru 4113 1995 81 2005
addthis.com 2589 921 1665 0
adsvr.org 1045 1045 0 0
rlcdn.com 793 793 0 0
bluekai.com 779 779 0 0
tapad.com 626 626 0 0
id5-sync.com 559 278 0 0

Table 7: The top-10 known tracking cookies and their expiry periods (m=month, y=year).

4.4.4 Fingerprinting APIs

We found many instances of calls to various fingerprinitng APIs on govern-

ment websites. Examples include: Storage (5,355,626), CanvasRendering2D

(7,615,438), window.navigator (3,349,296), HTMLCanvasElement (1,102,482), hardware

related APIs7 (230,426), window.screen (99,504), audio related APIs (16,274), win-

dow.navigator.geolocation (8334), RTC (2655). APIs related to Audio, hardware, RTC and

window.screen can track users for a relatively longer period as the characteristics of those

fingerprints generally remain static for a long time [225, 258]. We found other privacy

implications from the fingerprinting APIs: Window.navigator.geolocation gives a website

access to the location of user device (called 8334 times), and RTC is used to discover local
7Hardware fingerprinting APIs include: window.navigator.hardwareConcurrency, win-

dow.navigator.mediaDevices, window.navigator.getGamepads, window.navigator.oscpu, win-
dow.navigator.platform, window.navigator.vibrate and window.navigator.maxTouchPoints.
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IPs without user permission [97] (called 498 times). Such a combination of multiple fin-

gerprinting APIs can be used to identify a user with a high precision [97], and reportedly

being used to bypass EU GDPR cookie restrictions [212].

4.4.5 Government sites and tracking domains flagged as malicious

We found 0.2% (304) government sites were flagged as suspicious or malicious by VirusTo-

tal (at least by one engine). We skipped the sites flagged as malicious by Quttera and CRDF

VirusTotal engines, as the categorization returned by those engines were inconsistent. In

addition, we only considered the sites that apparently were used for malicious purposes

according to VirusTotal category labels and community comments, containing keywords,

including: malware (41 domains), compromised (51), infection (71) spyware (36), fraud

(6), weapons (3), command and control (5), bot networks (2), and callhome (4). Top 3

countries with sites flagged as malicious include Indonesia (112 out of 304), China (30)

and the US (14); example sites include Royal Thai air force (rtaf.mi.th), Palestine

civil defence (pcd.gov.ps), Iran health insurance organization (ihio.gov.ir) and

Yemen parliament (yemenparliament.gov.ye).

We also found 15 malicious domains host known tracking scripts in 377 government

sites as per VirusTotal (at least by one engine); see Table 8. We used the same procedure

as for government sites to scan tracking domains with VirusTotal. 8 (out of 51) malicious

domains set cookies on 311 government sites; see Table 9. We observed 50bang.org set

cookies on 299 government sites.

4.4.6 Privacy policies in government websites with trackers

For this analysis we leveraged 551 privacy policy URLs extracted from the government

Android apps (see Section 4.3.1). We found only 41.2% (227/551) of the corresponding

government sites included trackers (scripts/cookies). 23/227 sites do not mention the use
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Malicious type Tracking domains # Govt. sites (example countries)
Malware, malnets, malver-
tising

iclickcdn.com, qdatasales.com,
graizoah.com, 50bang.org, popcash.net

320 (China, India, Pakistan)

Browser hijacking otrwaram.com 1 (Brazil)
Adware, unwanted redi-
rects

newrrb.bid, supercounters.com,
tradeadexchange.com

43 (Indonesia, Myanmar, Vietnam)

Potentially unwanted pro-
gram

coinpot.co 4 (Bangladesh, Kyrgyzstan)

Spam freecounter.ovh 3 (Colombia, Malaysia, Pakistan)
Suspicious ufpcdn.com, dprtb.com, loulouly.net,

adhitzads.com
6 (Indonesia, Malta, USA)

Table 8: Tracking scripts included from potentially malicious domains.

Malicious type Tracking domains # Govt. sites (example countries)
Malware and malnets pingclock.net, qdatasales.com,

50bang.org
303 (China, Malaysia)

Potentially unwanted programs iyfsearch.com, coinpot.co, rtmark.
net

4 (Bangladesh, Kyrgyzstan)

Suspicious ufpcdn.com, remarketingpixel.com 4 (Kenya)

Table 9: Tracking cookies set by potentially malicious domains.

of tracking services in their privacy policies — based on matching the policy content with a

set of predefined keywords (e.g., analytics, 3rd party, Google, Facebook, Twitter, Linkedin)

using Policy Highlights [289]. Government sites with top unique tracking domains, but

not emphasizing the use of tracking services in their privacy policies include privacy.

gov.ph (8) — national privacy commission of Philippines, fsq.moh.gov.my (5) —

food safety and quality division of Malaysia. The unique tracking domains in these gov-

ernment sites include facebook.com, facebook.net, google.com, google-

analytics.com, googletagmanager.com, gstatic.com, youtube.com, ytimg.

com, wp.com. There were 9.3% (21/227) privacy policies of government sites that are not

written in English (we could not translate 6 of them). There were also 11 privacy policy

URLs of government sites that no longer exist.

4.4.7 Foreign-hosted government sites

We extract the DNS resolution information of the crawled government sites from Open-

WPM to find the IP of each domain. Then using geoiplookup,8 we determine the geolo-

cation and Autonomous System Number (ASN) details of each IP address. Singanamalla

8https://linux.die.net/man/1/geoiplookup
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et al. [256] found 94.5% (127,327/134,685) of government sites are either hosted privately

or by an unknown hosting provider. In contrast, our analysis focused on government sites

hosted in foreign countries. We observed 194 countries host their site content using services

from a foreign country; e.g., 2.2% (489/22,506) websites from the United States and 2.9%

(370/12,583) websites from China are hosted outside these countries. These sites are hosted

by cloud providers (i.e., hosting/CDN providers) with data centers around the globe; Wix

(102) and Akamai (67) host most of these sites for the United States, while Quantil (202),

Cloudflare (39) and Alibaba (25) hosted most sites for China. Some countries in Africa

host all their government sites (in our dataset) outside: Chad (5), Congo (9), Equatorial

Guinea (2), Somalia (16), Togo (3). Most prominent government sites (10) in Somalia

(e.g., centralbank.gov.so, as.parliament.gov.so) were hosted by a provider (Unitedlayer) in

the US.

We analyzed 1466 government websites, which are likely to be hosted at a foreign

provider, not at CDNs due to the fact that ASN names of these websites did not contain

a CDN listed in [50], and their IP addresses remained static and at a foreign geolocation

when accessed both from IP addresses in Canada and in the Netherlands. We also found the

categories [201] of these websites by parsing the text within meta tags of request headers–

to determine if these sites serve any sensitive/critical purposes. Notable categories of these

sites include: election (e.g., US/Delaware’s election website elections.delaware.

gov hosted in the UK); defence (e.g., Australia’s army.defencejobs.gov.au hosted

in the US); police (e.g., Australia/Victoria’s policecareer.vic.gov.au hosted in

the US); courts (e.g., a New Zealand district court website: districtcourts.govt.

nz hosted in the US); immigration (e.g., Papua New Guinea’s immigration.gov.pg

hosted in Australia); and airports (e.g., Kenya’s kaa.go.ke hosted in the Netherlands).
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4.5 Results: Government Android apps

In this section, we present privacy and security issues found in government Android apps

using static and dynamic analysis methods.

Static analysis results: Tracking SDKs and exposed databases. From MobSF, we found

a total of 1647 tracking SDKs (59 unique) in 1166 apps. With LiteRadar, we checked the

usage types of these SDKs (e.g., Google Mobile Services is used as a development aid).

Similar to government websites, most tracking SDKs were also from Google (611/1647,

37.1%). Other tracking SDKs include Facebook (105/1647, 6.4%), Microsoft (34/1647,

2.1%) and One Signal (48/1647, 2.9%). Note that Google tracking SDKs are used for ad

and mobile analytics. Although the collection of analytics can help provide a better user

experience and improved protection (e.g., fraud detection [206]), it can also be effectively

used for tracking/profiling.

We found that 2.57% (30/1166) government Android apps possibly exposed their Fire-

base databases with sensitive user information (as apparent from the data types); however,

we did not verify/use/store this info (deleted immediately after checking the data types).

Notable examples: an official app of the Colombian senate (gov.senado.app), and a real-

estate regulation app from the government of Saudi Arabia (sa.housing.mullak) apparently

leak user names and passwords.

Dynamic analysis results. Here we report the vulnerabilities found by inspect-

ing the pcap files collected from our dynamic analysis (see Section 6.3.5). 7 apps

from Bangladesh, Brazil, India, Malaysia, Nigeria, Palestine, United Arab Emirates

sent login information over clear text via HTTP. These apps provide various ser-

vices, including: crowd funding (com.synesis.donationapp in Bangladesh); provisioning

birth/death/marriage certificates, and property tax details (in.gov.lsgkerala.mgov, in Ker-

ala, India); services for teachers (com.trcn.teachers, in Nigeria); anti-drug volunteer man-

agement (my.gov.onegovappstore.skuadaadk, in Malaysia); and salary payments and other
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services for government employees (ps.gov.mtit.mservices, in Gaza, Palestine). One of

these applications (com.trcn.teachers) sent traffic in the clear to an IP address belonging to

an advertising/marketing service.

From the decrypted traffic from our mitmproxy, we observed 11 apps leaked hard-coded

(default) user/admin credentials and API keys; see Table 10. We disclosed our findings

to the app developers, and one replied mentioning that the credentials we observed were

for an experimental feature which is now discontinued. For ethical/legal considerations,

we did not use the leaked passwords observed for any form of validation. The services

offered by these apps include crowd funding, information of leisure activities at beaches

and parks, driver training and road rules, lodging of complaints, and provision of various

digital resources.

We also found 23.1% (269/1166) government Android apps sent device data such as

device model, and device ID to known trackers. Such device data can be used to passively

track users by fingerprinting their devices. Most data types used for tracking were collected

by Branch Metrics (device ID, device model, IPV4, screen DPI, height, and width) and

Unity Technologies (device ID, device model, hardware name, screen DPI, height, and

width).

Government apps and 3rd-party domains flagged as malicious. 40/1166 government

apps from 22 countries were flagged as malicious by VirusTotal (at least by one en-

gine). 10 of these apps contained a stealthy malware [142] disguising as a legitimate

process executing harmful tasks (one of these apps removed the malware in a newer

version), 3 apps included a stealthy adware showing as an ad blocker for Android de-

vices (Android.WIN32.FakeAdBlocker.a), 2 apps included obfuscated malicious software
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Info
leak

Country App type

Australia Parking info/directions to public hospitals

Bangladesh Crowd funding platform for nation building (Ek
Desh)

D
ef

au
lt/

ad
m

in
us

er
ID

an
d

pa
ss

w
or

d Brazil Quality information of beaches

Cambodia Info on new driver training and road rules

Pakistan Communicate and provide information to public on
natural disasters

Pakistan Lodge complaints against federal government agen-
cies

Portugal The European Economic Area (EEA) program

Singapore A citizen-science platform for the National Parks
Board (NParks)

UK Access services offered from local council

A
PI

ke
y Afghanistan Services for urban development by Capital Region

Independent Development

Bangladesh Used for the “Digital Bangladesh” initiative
Table 10: Exposure of sensitive information from Android apps (observed in the decrypted traffic
via mitmproxy).

that installs other malware (Trojan.Trojan.Dropper.AndroidOS.Hqwar.bb). We also ob-

served calls to 2 malicious 3rd-party domains by government apps. According to Virus-

Total community comments, 2 apps (com.linkdev.dhcc.masaar and com.rajerawanna of-

fered by United Arab Emirates and India, respectively) made calls to a malicious domain

(api.ipify.org) that is infected by Cobalt Strike [195].

4.6 Discussion

In this section, we discuss privacy implications of our findings, and list a few recommen-

dations to mitigate these issues.

Commercial trackers. Commercial websites are heavily tracked by the top tech giants

such as Google, Facebook (see e.g., [160, 242]). Both government websites and Android
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apps contain a significant number of such trackers; e.g., 17% of government sites and 37%

of government apps contain Google trackers. Such commercial tracking is unexpected and

may surprise many privacy-conscious users. Governments may want to engage citizens

more actively by integrating social media resources on their websites, or attempt to un-

derstand their users’ needs through the use of commercial analytical services; however,

exposing their users to commercial trackers should be taken more seriously. We found

10% of the analyzed privacy policies did not even mention the use of tracking services in

the corresponding government sites (see Section 4.4.6).

Out-sourcing app development. We found 19.8% (231/1166) apps were built by develop-

ers with non-government email addresses (137 with Gmail), indicating that at least some

of these apps were developed by third-parties. Such out-sourcing may introduce the risk of

leaking sensitive information, supply-chain attacks.9

CDNs and foreign hosting providers. Many web services, including some government

services, are adopting cloud platforms (e.g., Microsoft Azure) for scalability and cost re-

duction. We observed several government sites that supposedly deal with sensitive user

information (e.g., election, police, courts, defence, immigration, airports) were hosted

in a foreign country. Privacy policies of these government sites (e.g., elections.

delaware.gov — see Section 4.4.7) do not mention anything about such outsourcing.

The use of foreign hosting providers and CDNs undermine the control of the hosted data;

even if the backend databases remain at a government-owned facility, user data may still

be (temporarily) available to the server admins of the CDNs/hosting providers, and violate

data sovereignty.10 Although CDN hosting providers allow choosing a particular location

to serve traffic, the closest location of the edge server/data center may not be within the

country owning the site. There are many countries where CDNs have no data centers [50].

9Cf. the recent SolarWinds incident: https://www.cisecurity.org/solarwinds/
10Several governments are considering legislation on these issues–wikipedia.org/wiki/Data_

sovereignty; see also the French government agreement with Google and Microsoft [232].
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Malicious domains. Government sites and apps that are flagged as malicious, or include

content from third parties (e.g., scripts, cookies) labelled as malicious, can harm users

and diminish their trust. Unfortunately we found such malicious sites/apps on government

services (304 government sites and 40 apps were flagged as malicious by VirusTotal). Gov-

ernments should scan their websites/apps regularly to detect such domains.

App vulnerabilities. We found 7 government apps expose cleartext user login information,

11 apps include hard-coded (possibly admin) credentials and API keys, and 30 apps expose

their unprotected Firebase datastores — all of which can enable attackers to harvest PII at

a large scale.

4.7 Recommendations

Since many governments continue to move to digital platforms, the relevant government

authorities responsible to ensure privacy in each country/region should periodically review

government websites and mobile apps for tracking, privacy and security exposures, at least

to comply with their own legislation.

We strongly recommend developers to use HTTPS properly (cf. [256]), not to rely on

cloud-hosted mobile backends such as Google Firebase (exposing user data to commercial

operators), and not to include admin API keys/credentials in the app code (possibly expos-

ing user data to anyone). Security issues regarding the use of cloud-based mobile backends

have been analyzed in recent work [321, 17], and developers should check their apps and

servers for similar issues.

Government developers also need to be aware of privacy implications of using commer-

cial JavaScript libraries and mobile SDKs, as user tracking is at the core of many of these

libraries/SDKs. Clearing the browser history or the use of private browsing mode is not

effective against fingerprinting attacks, which are actively being deployed to defeat cookie

consent [212]. Thus, third-party scripts should be analyzed to check for the presence of any
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fingerprinting APIs, especially if the APIs are not essential for the service’s functionality.

Similarly, the use of session replay scripts (e.g., FullStory) should be avoided, or at least

configured properly to reduce tracking and data exposure.

4.8 Summary

Despite being publicly funded by tax payers money, government services enable commer-

cial trackers to collect data about citizens virtually everywhere across the globe. From

our analysis of 150,244 government websites and 1166 government Android apps, we

found Google dominates in tracking, closely resembling the same trend as in the com-

mercial domain, which is largely powered and monetized by tracking/profiling; cf. [145].

Many government sites include Google maps, YouTube videos, analytic services, and so-

cial bookmarking services (e.g., AddThis), that allow to track users from commercial en-

tities. YouTube cookies on 13% of government sites are set to expire in the year 9999.

These YouTube cookies can associate browsing behaviours of users with a Google account

(if logged in). Despite GDPR, there were 98% of government sites with known tracking

cookies in the European Union. We found government sites in 7 countries use session

replay, that can expose sensitive information of users. We also found 59 unique tracking

SDKs on the analyzed government apps, and 2.6% of government Android apps exposing

Firebase database endpoints with sensitive user information. In addition, 7 apps sent login

information over clear text, and 11 apps leaked hard-coded user/admin credentials and API

keys. There were 23% apps that leaked device data (e.g., decide model, device ID). We also

found 0.2% and 3.4% of the analyzed government websites and Android apps, are flagged

as malicious by VirusTotal, respectively.

A downside with government services compared to commercial services is that users

have no choice in terms of switching to another provider.
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Chapter 5

Privacy analysis of hospital websites

5.1 Introduction

Increased tracking of online user behaviours has become the norm for most commercial

web services [173], although users can still choose a relatively less privacy invasive service,

e.g., between search engines such as Google vs. DuckDuckGo. On the other hand, some

websites (e.g., government health and hospital services) do not have any alternatives [239],

should a user identifies potential tracking activities. With the COVID-19 pandemic, more

health services are being offered online to limit the spreading of the virus—e.g., a gen-

eral practitioner can be channeled in minutes, around the clock [185], without having to

wait for an in-person meeting. As such, patients are able to consume health related ser-

vices from online services with a few clicks — book appointments, health checkups, and

view medical results. Unlike the interactions with other commercial websites, a variety of

sensitive information items (e.g., identity information, health status, mental health, repro-

ductive care including abortion, substance abuse) are exchanged with hospital sites. These

sensitive information can be leaked to third-parties if trackers/session-replay scripts are de-

ployed on hospital websites. Disclosure risks of such sensitive information may include

discrimination, social stigma and physical harm.
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Privacy and security of health care systems is paramount, and appropriate policies to

safeguard its users needs to be enforced [38]. However, lapses in the deployment of such

effective measures are common. For example, a German security firm (Greenbone Net-

works) found that medical files of 107 million medical images (e.g., X-rays, scans) of

Indian patients were leaked and made available online [275]. These medical records hap-

pen to contain various sensitive information of patients (e.g., patient name, date of birth,

medical institution name, ailment, physician name). In another incident, computer systems

of a major hospital chain, with hospitals in more than 400 locations, failed when it was hit

by a ransomware attack [198]. Stolen health records may have a higher demand (cf. credit

card numbers) in the darkweb [7]. Similarly, the cost to remediate breaches in health care

is also high [7].

There are several studies (e.g., [317, 200, 169, 234]) relating to privacy of health ser-

vices, but they target a specific geographical location. Robinson [234] analyzed 210 public

hospital websites in Illinois, USA and found 94% of websites include trackers on them;

most common trackers on these websites include Google Analytics (74%), Google (88%),

and Facebook (26%). Niforatos et al. [200] analyzed 61 US hospital websites, and found

they collect information relating to advertisements (61, 100%), third-party cookies (55,

90%) and session recording (14, 23%) services. Most of these trackers are from Facebook

(40, 61%) and Google (54, 89%).

In this work, we perform a large scale web privacy measurement study of hospital web-

sites, using 19,635 hospital websites from 152 countries. We collect hospital URLs from

several sources (e.g., [234, 136, 74]) by scraping the source code of the corresponding

web pages. Thereafter, we crawl the extracted hospital website URLs using the Open-

WPM [97] web privacy measurement framework; 152 sites were unreachable. To the best

of our knowledge, this is the first measurement study on the privacy/security of hospital
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websites, performed at a global scale. We analyze the instrumented tracking metrics (third-

party scripts/cookies, fingerprinting APIs) using the OpenWPM database. We filtered the

websites using session replay services , and we inspected the potential sites using session

replay with HTTP Toolkit [144] to identify specific information leaked (e.g., date of birth).

We also use VirusTotal [298] to identify hospital sites and domains hosting scripts/cookies

that are malicious.

Contributions and notable findings.

1. We develop a framework to collect hospital websites from various external sources,

and a test methodology to evaluate these sites for possible privacy exposures.

2. We found that 699/19,483 (3.6%) hospital websites included session replay services

— e.g., FullStory,1 Yandex,2 Hotjar.3 91/699 (13.0%) of these websites belong to

EU hospitals. We observed users’ information was sent from these hospital sites to

third-party servers (FullStory, Yandex and Hotjar). The information sent to these ex-

ternal servers (owned by session replay services) include sensitive information such

as phone number, date of birth, user credentials, residential address, passport infor-

mation, booked medical services.

3. We found widespread use of commercial trackers on hospital websites. Major known

trackers4 include Google, Addthis, Facebook and Baidu. We observed 10,417/19,483

(53.5%) hospital websites included tracking scripts/cookies. There were tracking

cookies set to last for a very long time — 5.8% (1136/19,483) of sites included 1713

known tracking cookies expiring in the year 9999. These trackers are embedded in

analytic services, and other third-party services (e.g., Google maps) on landing pages

of hospital websites.
1https://www.fullstory.com/session-replay/
2https://yandex.com/support/metrica/general/counter-webvisor.html
3https://www.hotjar.com/session-replay-software/
4We define a known tracker as the third-party (e.g., script/cookie on a first-party website) blocklisted by

EasyPrivacy [92] filtering rules.
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4. We observed hospital websites in Oceania (61.7%, 140/227) and North America

(60.1%, 2805/4666) included a large proportion of known tracking scripts, compared

to Asian hospital websites (39.6%, 2844/7183). Known tracking cookies were set in

less than 15% of hospital websites except for North America (8186/28,960, 28.3%).

Known trackers in China are location specific, perhaps due to the use of alternative

local services, as foreign web services (e.g., Google, YouTube, Facebook) are mostly

blocked in China.

5. We found 33/19,483 hospital websites were flagged as malicious by at least 3 se-

curity engines used by VirusTotal (e.g., cliniqueelmenzah.com, mathahospital.org).

Additionally, 11 and 18 domains of known tracking scripts and cookies were flagged

as malicious by at least 3 security engines, respectively. We have notified admin-

istrators for 18 of these websites about our findings; no contact information were

available for the remaining 15 websites.

5.2 Related work

Web tracking measurements. There are many past studies that measured the privacy ex-

posures from a variety of popular web applications and mobile apps. Englehardt et al. [97]

implemented the OpenWPM web privacy measurement framework to identify online track-

ing behaviours of websites, and used their framework to measure tracking in top-1M sites.

The authors found Google and Facebook trackers dominate in tracking websites. Sama-

rasinghe et al. [241] measured web tracking in top-1K sites from 56 countries, and found

Google trackers are highly prevalent on those sites (irrespective of the location), and many

cookies were valid for more than 20 years. Acar et al. [2] extended OpenWPM to investi-

gate attacks that exfiltrate data using third-party scripts (i.e., misuse of browsers’ internal

login managers, social data exfiltration, whole-DOM exfiltration), and found sites that leak
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sensitive user information (e.g., credit card information, medical details, passwords) to ses-

sion replay services. Xuehui et al. [145] studied tracking in top country specific sites (in

Alexa [12] list) from 4 countries (UK, China, Australia, US), and found tracking behaviours

that are specific to those countries — e.g., users in China were tracked less than those in

the UK. Google Analytic is the most common tracker in 74% of hospital websites. Papado-

giannakis et al. [212] found more than 75% of tracking activities happened even before

interacting with the cookie banners, or after users reject all possible cookies. We measure

tracking in hospital sites from 152 countries around the world, and found level of tracking

in countries located in different regions vary — e.g., proportion of third-party scripts in

North America is relatively higher compared to that of other regions; i.e., percentage of

hospital websites with third-party scripts and cookies in North America was 60% and 29%,

respectively. In addition, we observe location specific trackers (e.g., baidu.com on Chinese

hospital websites).

Privacy and security issues in health related websites. Past studies on privacy and secu-

rity issues of hospitals targeted hospitals only from a specific or a few jurisdictions. Zheut-

lin et al. [317] performed a study of patient data tracking on 86 pharmacy websites. The au-

thors found that 76.4% of these websites included ad trackers; other tracking methods used

include third-party cookies, session monitoring5 (using Blacklight [35]), keystroke captur-

ing, sharing data with top tracking entities (e.g., Google, Facebook). Joshua et al. [200]

studied tracking on 61 US hospital websites, and found among other forms of tracking, 14

(23%) websites used session recording services to track users. Celine et al. [169] studied

how caregivers’ access to patient portals may jeopardize user privacy and security. The au-

thors found 69/102 (68%) hospitals provided proxy accounts to caregivers; 94/102 (92%)

hospitals were asked about password sharing between patient and caregiver, and 42/92

(45%) endorsed such practice. Robinson et al. [234] studied 210 public hospital websites

5Session monitoring reveals only the use of tracking technologies in a browsing session, but not able to
replay a recorded session.
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in Illinois, USA, and found 94% of hospital websites included an average of 3.5 track-

ers. Wesselkamp et al. [305] found advertising cookies performing cross-site tracking in

health related websites (i.e., for booking appointments). We found 10,417/19,483 (53.5%)

hospital websites included tracking scripts/cookies. Google dominates in tracking hospital

websites. Third-party scripts included in 699/19,483 (3.6%) hospital websites sent user

information to external session replay servers (FullStory, Yandex, Hotjar). In addition, we

observed 33/19,483 hospital websites were flagged as malicious by VirusTotal [298].

5.3 Methodology

In this section, we detail our methodology for hospital website (URLs) collection, and

privacy analysis and measurement techniques for the collected websites; see Fig. 25 for an

overview.

Figure 19: Overview of our methodology: hospital website collection and tracking measurement
on websites — steps 1©, 5©, 6© represent hospital websites served as input to OpenWPM, Virus-
Total scans, session replay analyzer, respectively; step 2© is instrumented data saved to OpenWPM
database; step 4© is third-party script/cookie domains fed to VirusTotal scans; steps 7© (OpenWPM
measurement data), 8© (malicious domains detected), 9© (domains subjected to session replay) are
the output for further analysis from OpenWPM, VirusTotal scan results, and websites subjected to
session replay, respectively.
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5.3.1 Collecting hospital websites

To extract hospital websites, we use webometric world hospital websites as the primary

source of information. We programmatically parse the content of each of the tabs appearing

on the landing page of webometric world hospital websites [74] corresponding to different

regions. For every hospital website URL, we extract corresponding meta data (e.g., hospital

name, country, continent). Since webometric world hospital websites is not a complete list

of hospital websites, we also complement other available hospital website lists — e.g., for

China we use Haodaifu.

To collect Chinese hospital websites from Haodaifu [136], we crawl the list of hospi-

tal names from each of the 31 provinces in mainland China using [136]. Then we extract

official names of these Chinese hospitals. These hospitals belong to different tiers (e.g.,

primary, secondary, tertiary). In order to determine the URL from the official names of

these Chinese hospitals, we search each official name using the Baidu search engine. We

observe that Baidu search results labels the official name of a hospital website (if exists)

with two special Chinese characters — i.e., if a particular hospital does not have a website,

Baidu search results will not label the official name of the hospital with the two special

Chinese characters. Since the response from Baidu search results is not structured, it is not

possible to mechanically parse the output. Therefore, we use the Baidu Organic Results

API [252] to transform the search results to JSON format, and consider only the top 10

results to collect the hospital websites in mainland China.

We collect 19,635 unique hospital websites from different sources (i.e., webometrics

world hospital websites [74], Wikipedia [308] and haodaifu [136]) for our privacy mea-

surements. The hospital websites that we collect are hosted in countries pertaining to

different regions — Asia (7183), Europe (5936), North America (4666), Latin America

(1362), Oceania (227), Africa (261).

We also identify hospital websites with login forms on landing pages by matching the
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corresponding source code with specific keywords (e.g., login, user id, password). This

approach will work for any site irrespective of the language of page content, as the source

code syntax of a web page is independent of the language of page content.

5.3.2 Web privacy measurements

We configure OpenWPM [223] web privacy measurement framework to run with 15 paral-

lel browser instances in headless mode. We explicitly enable OpenWPM instrumentations

for HTTP requests, JavaScript, cookies, DNS requests, callbacks and page navigations.

Javascript instrumentation includes passive fingerprinting APIs used in the website. We

clear the browser profile after each URL visit, to simulate the first visit to the browser in-

stance, to avoid any influences from past browsing history. We use a physical machine

(connected to our university network) running Ubuntu server 20.4 LTS, 32GB RAM, 1TB

SSD, Intel Core i7-6700 CPU for our measurements between Sept. 1, 2021–Dec. 31, 2021.

A total of 19,635 hospital websites from 152 countries were crawled using OpenWPM

from a city in North America; 152 websites failed due to expired domain registrations and

unreachable websites. The instrumented tracking metrics extracted from OpenWPM are

saved to a SQLite database for further analysis. The saved information in the database

contains both stateful (i.e., scripts/cookies) and stateless (fingerprinting) forms of tracking

metrics. We then examine the saved tracking scripts/cookies for third-party domains (i.e.,

domains of scripts/cookies that do not match the domain of the hospital site that they are

on).

Categorize third-party scripts and cookies. A third-party is a script/cookie included on a

first party website (i.e., hospital website). We use filtering rules [92] that block third-parties

on hospital sites to identify 3 categories of third-party domains: EasyList rules block ad-

related third-parties; EasyPrivacy blocks known trackers; third-parties that are not blocked

by EasyList/EasyPrivacy filtering rules are treated as unknown trackers.
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Identify fingerprinting APIs. We use the instrumented JavaScript data to extract fin-

gerprinting APIs included in hospital websites. Third-party domains hosting scripts that

include these fingerprinting APIs are of different types — e.g., window.navigator, win-

dow.screen, window.document, HTMLCanvasElement, CanvasRenderingContext2D, Au-

dioContext, RTC. These fingerprinting APIs are used to passively track users by leveraging

various characteristics of a user’s environment, including hardware, operating system and

software characteristics.

5.3.3 Session replay scripts

We extract hospital websites that include scripts (e.g., fs.js, tag.js, hotjar-HotjarID.js) with

known session replay functionality [2] from the javascript table of OpenWPM SQLite

database. These scripts pertain to Hotjar, Yandex and FullStory session replay services.

We observe websites with Hotjar (but not FullStory, Yandex) session replay scripts send

data over websockets. Therefore, we use selenium-wire [227] to automate the crawling of

the landing page of 469 hospital websites with Hotjar session replay scripts, to identify the

sites sending data over web sockets directly from the landing pages.

While existence of the session replay scripts (and the use of websockets by Hotjar) can

be easily enumerated, it requires some manual effort (e.g., filling out forms) to understand

what is leaked to the session replay servers. Therefore, we limit our manual tests to a se-

lected set of hospital websites (183, of which 101 sites with Yandex services across multiple

continents, 78 EU sites with Hotjar, and 4 sites with FullStory scripts). We observe 40/183

hospital websites require to create an account prior to booking an online appointment;

74 hospital websites have online forms (without account registration) to book an online

appointment; remaining websites (69) do not have functionality to book an online appoint-

ment. We created accounts in 40 of hospital websites that require an online registration.

Then we use crafted (fake) data (e.g., user name, password, email address) to book online
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appointments with 114 (i.e., 40 sites with registration and 74 without registration) hospital

websites. Thereafter, for those 114 hospital websites, we use Chrome DevTools [57] and

HTTP Toolkit [144] to identify sensitive information transmitted to remote servers during

session replay.

5.3.4 Detecting malicious domains

Potential security issues in hospital websites can lead to privacy issues. Therefore, to deter-

mine hospital websites and included third-party script/cookie domains that are malicious,

we scan all 19,483 hospital websites, and 3673 third-party domains hosting scripts/cookies

using VirusTotal. We report only those domains that are flagged by at least 3 security

engines as malicious.

5.3.5 Limitations

Our hospital website collection technique may not find all hospital websites in any given

jurisdiction. Additionally, we use filtering rules [92] to identify known advertisers and

trackers, which are not comprehensive enough to find all possible tracking domains (espe-

cially country specific trackers). Some known advertisers/trackers may operate in a dual

role of advertising and tracking. We also involved manual steps in verifying false posi-

tives/negatives of hospital websites including scripts pertaining to session replay services,

which is non-trivial to automate.

5.4 Results

In this section, we report our findings on privacy issues of hospital websites.
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5.4.1 Session replay

Session replay services are used to replay a visitor’s session through the browser, to get a

deeper understanding of a user’s browsing experience; information replayed include user

interactions on a website such as typed inputs, mouse movements, clicks, page visits, tap-

ping and scrolling events. During this process, users’ sensitive information can be exposed

to third-party servers that host session replay scripts. We identified three session replay

services in the analyzed hospital websites (19,483): Hotjar (469, 2.4%), Yandex (226),

FullStory (4); see Table 14 for examples of hospital websites with session replay services.

The regions that have a heavy presence of session replay services on their hospital websites

include North America (291/4666, 6.2%) and Europe (299/5936, 5.0%); see Table 13. In

total, we found session replay scripts on 699 hospital websites; 91/699 (13.0%) of sites

were from EU countries.

Yandex. The session replay scripts hosted by Yandex were included in 153/226 (67.7%)

hospital websites in Russia. These Yandex session replay scripts collect sensitive medical

information of users and send them to remote servers (over HTTPS). In addition, sensi-

tive information is exposed while performing common interactions with hospital websites,

including booking online appointments, contacting hospital by entering sensitive informa-

tion (e.g., medical description); see Table 11. There were 24 (out of 101 — see Sec. 5.3.3)

Russian hospital websites that leak sensitive information with Yandex session replay ser-

vices — user name, password, phone number, date of birth, address (street, city, country),

passport information collected from lk.baltclinic.ru; requested medical service and login

information collected from medvedev.ru, zdordet.ru, vizus1.ru, gutaclinic.ru, president-

clinic.ru; user comments/messages collected from alfa-med.ru, benefacta.ru, gkb12.ru,

glazalazer.ru, presidentclinic.ru, onclinic.md, vizus1.ru. We found 13 hospital websites

in EU countries include Yandex session replay scripts, and 3 of these EU hospital web-

sites (in Greece, Portgual and Czech Republic) apparently violate GDPR [100] privacy
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regulation. These 3 EU hospitals leak information to Yandex remote servers as follows:

multiscan.cz (in Czech Republic) leaked search information from the search functionality;

lifeclinic.gr (in Greece) leaked user name, phone number, email, subject and message sent;

and chpvvc.pt (in Portgual) leaked name, email, service rendered and message sent.

FullStory. We observed FullStory session replay scripts included in www.mater.org.au,

www.ramsayhealth.co.uk, sent visited page, and screen width and height of the user’s dis-

play to a remote server.

Hotjar. Session replay code from Hotjar is included within the head tags in the hospital

website page source as a JavaScript snippet [141]. The session replay data captured from

Hotjar scripts is sent to a remote server using websocket connections. From our automation

with selenium-wire, we found 27/469 (5.8%) hospital websites that include Hotjar session

replay scripts, sent data over websockets to remote servers — e.g., 3 EU hospital websites

and 18 US hospital websites enable such data transmission (apparently, violating GDPR

and HIPPA privacy regulations, respectively); the remaining 6 hospital websites are in non-

EU countries. In addition, by manually inspecting 78 (see Sec. 5.3.3) EU hospital websites

with HTTP Toolkit/Chrome DevTools, we found 4 of the inner URLs from those sites,

leaked sensitive information through websockets — e.g., user name, email, phone number,

medical service are sent from www.bilicvision.hr (in Croatia); user name, email, phone

number, message and country are sent from www.reprofit.cz (in Croatia); see Table 12 for

information leaked by hospital websites with session replay services in the EU countries.

5.4.2 Domains flagged as malicious

With VirusTotal, we found 33/19,483 websites were flagged as phishing, malicious or mal-

ware by at least 3 VirusTotal engines;6 26 of the flagged sites were part of more than

one VirusTotal category; 27 sites were flagged as phishing. We did not consider scan

6https://support.virustotal.com/hc/en-us/articles/115002146809-
Contributors
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Region FullStory Hotjar Yandex
Europe 1 108 190
NorthAmerica 2 282 7
LatinAmerica - 37 1
Asia - 20 28
Africa - 3 -
Oceania 1 19 -

Table 13: Session replay services on hospital websites.

SRS Hospital domain names Leaked data
Hotjar bilicvision.hr, multiscan.cz name, email, password, phone, chat
Yandex alfa-med.ru, bakulev.ru name, email, password, phone, speciality
FullStory ramsayhealth.co.uk URL, screen width, screen height

Table 14: Examples of hospital websites with session replay services — SRS = Session replay
service.

results from some VirusTotal engines (e.g., CRDF, Quttera) as the results from those

engines were unreliable. Most hospital websites flagged by VirusTotal were in China

(10/33, 30.3%) and India (3/33, 9.1%). We also looked into malicious JavaScript files

that were included in the 33 flagged hospital websites; ultramed.pl (in Poland) and bcm.es

(in Spain) included 10 and 2 unique malicious JavaScript files, respectively. The common

malicious JavaScript files contained jQuery keyword in its file name (e.g., jquery.min.js,

jquery.themepunch.tools.min.js), or were part of WordPress web applications (e.g., wp-

embed.min.js, wp-emoji-release.min.js). jQuery is a commonly used JavaScript library,

and it is the base for many add-on scripts/plugins that are also included in platforms such

as WordPress [71, 177]. Fake jQuery scripts with malicious source code [269] can be dan-

gerous for users.

The following 6 hospital websites (in 4 countries) were flagged as malicious by more

than 5 security engines: a Tunisian hospital website (cliniqueelmenzah.com) was flagged

as malicious by 9 security engines; sites from China (jrszyy.com, zyxyfy.com, ahzxy.com),

India (mathahospital.org) and Brazil (hsja.com.br) were flagged as malicious by 6 secu-

rity engines. The malicious categories of these flagged websites include known infection
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source, media sharing, compromised websites, malicious, malware and spyware.

We also scanned all 3673 third-party domains (of scripts/cookies) using VirusTotal, and

found 27 of them (e.g., iclickcdn.com) were flagged by at least 3 VirusTotal engines. For

the domains hosting third-party scripts/cookies, 11 and 18 were flagged as malicious and

malware, respectively. In Table 15 and Table 16, we list examples of potentially malicious

domains hosting tracking scripts and cookies (including the presence of such domains on

hospital sites), respectively.

Category Tracking domains # hospital sites
Malware, malicious iclickcdn.com, newrrb.bid, do-hero.com,

wek7ipqx359.ru, 51.la, sc-static.net
120 (China, USA)

Malicious, phishing ignorelist.com, popupsmart.com,
leostop.com, popcash.net, secureserver-
cdn.net

23 (USA, Chile,
Malaysia)

Malware che0.com, xc7789.top 4 (China, Spain)
Malicious d10lpsik1i8c69.cloudfront.net, fontawe-

some.com, bitrix.info
138 (USA, Russia,
France, Japan)

Table 15: Known tracking scripts hosted on potentially malicious domains that are flagged by
VirusTotal. The countries within parenthesis in the 3rd column of the table are example location(s)
of the hospital website(s).

Category Tracking domains # hospital sites
Malware, mali-
cious, phishing

cnzz.space, crzenith.com, 2 (China, Sandi Arabia)

Malware, mali-
cious

bedrapiona.com,
medreviews.ru, inform-
nikolase.live, 04zl.cn,
greenklick.biz

85 (China, Mexico, Spain)

Malicious, phish-
ing

onmarshtompor.com, click-
matters.biz

2 (Bulgaria, Spain)

Phishing junmediadirect.com,
123formbuilder.com, app-
us1.com

33 (USA, Australia, Bel-
gium)

Malware fontawesome.com, clarity.ms 124 (USA, Canada, Japan,
United Kingdom, Portugal)

Malicious sc-static.net 32 (USA, Saudi Arabia)
Table 16: Known tracking cookies set by potentially malicious domains that are flagged by Virus-
Total. The countries within parenthesis in the 3rd column of the table are example location(s) of
hospital website(s).
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5.4.3 Websites using HTTP and login forms

Hospital websites served over HTTP may allow an adversary to allow intercept sensitive in-

formation sent over the network traffic. We found 4062/19483 (20.8%) of hospital websites

use HTTP. Some sites perform sensitive operations on these HTTP pages. For example,

http://www.bfh.com.cn/Account/Register allows user registration function-

ality using HTTP. During user registration, the user is required to enter account informa-

tion (user name, password) and other sensitive information (official name, national ID,

mobile phone number, email, telephone number, province, city, marriage, home address,

job, work address, MSN, QQ). Similarly, user registration information (user name, official

name, password, national ID, mobile phone number and medical card ID) entered through

http://www.zbdyyy.com/usersys/regist.aspx, is sent over HTTP, and can

be intercepted by an adversary. We also found that the use of login forms in the landing page

of hospital websites is mostly available in China (596/4324, 13.8%) and Australia (38/160,

23.7%), and some of these forms are submitted via HTTP. For example, 346/596 (58.1%)

Chinese hospital websites with login forms sent login credentials in the clear — e.g., after

clicking the top right button of hospital site http://www.ahs2y.com/, a login form is

opened (http://111.39.250.98:7001/defaultroot/login.jsp); once the

account name and password is entered and submitted, the credentials are sent over plain

HTTP.

5.4.4 Third-party tracking scripts

We found 9443/19,483 (48.5%) of hospital websites included at least one known tracking

script. Hospital websites in Oceania (140/227, 61.7%) and North America (2805/4666,

60.1%) had a high percentage of websites with known tracking scripts. Hospital sites

in Asia (2844/7183, 39.6%) had a relatively lower proportion of sites with known track-

ing scripts; see Fig. 20. Top known trackers included on hospital websites (19,483) are:
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Figure 20: Percentage of hospital websites with known tracking scripts/cookies.

googleanlaytics (6607, 33.9%), googletagmanager (4816, 24.7%), facebook (2552, 13.1%)

and cloudflare (564, 2.9%); see Fig. 21. Both googletagmanager and googleanalytics are

used to collect tracking/marketing data on hospital websites; gtag.js sent event data to

Google Analytics, Google Ads and Google marketing platforms. Google Maps was in-

cluded in 1591 hospital websites; YouTube videos were embedded in 1372 hospital web-

sites; Addthis (s7.addthis.com) contained adware that redirected users to promotional web-

sites (246/19,483, 1.3%).

There were no significant differences relating to the proportion of hospital websites with

various categories of third-parties (i.e., ads, known trackers, unknown trackers) between

different geographical regions; see Fig. 22. However, some countries (with more than 9

hospital websites in our dataset) in different regions had known tracking scripts in most of

its hospital websites — Finland (18/23, 78.3%); Belarus (10/13, 76.9%); Norway (28/38,

73.7%); Latvia (18/25, 72.0%); Kuwait (7/9, 77.8%); Japan (702/1012, 69.4%). We also

found known tracking scripts that are region specific; bdstatic.com, qq.com and 50bang.org

only tracked websites in Asia; adsrvr.org, rtrk.com, btttag.com and cloudfront.net were

only found on North American hospital websites; Oceania had only one regional script

domain (turbolion.io); Africa had no regional tracking script.
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Figure 21: Top-10 known tracking scripts on hospital sites - the bars show the number of occur-
rences of known tracking scripts (vertical axis to the left), while the line chart shows the number of
hospital websites with known tracking scripts.
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Figure 22: Proportions of third-party scripts in different categories (tracking, advertising and un-
known) included on hospital websites by region.
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Figure 23: Top-10 known tracking cookies on hospital sites - the bars show the number of occur-
rences of known tracking cookies (vertical axis to the left), while the line chart shows the number
of websites with such cookies.

5.4.5 Third-party tracking cookies

We found 2839/19,483 (14.6%) hospital websites from 85 countries set known tracking

cookies; see Fig. 23. The top-3 regions with the highest proportion of known tracking

cookies set on hospital sites were Asia (3086/8689, 35.5%), North America (8186/28,960,

28.7%) and Oceania (141/594, 23.7%); see Fig. 24. Taobao (Alibaba) that collects user

behaviours for targeted advertising [16], mmstat.com sets third-party cookies on a large

proportion of hospital websites in China (425/4324, 9.8%). Similarly, a large proportion

of known tracking cookies (483/4324, 11.2%) were set by baidu.com on Chinese hospital

sites.

We also examined the cookie validity duration by regions, and found that 1017/3264

(31.2%) known tracking cookies set on hospital websites in Asia, were valid for more than

1000 years. Known tracking cookies that expire after 5 years include mmstat.com (1039)

and baidu.com (431); see Table 17.
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Figure 24: Proportions of third-party cookies in different categories (tracking, advertising and
unknown) set on hospital websites by region.

Cookie Expiry Duration

Tracker #Sites 1m-1y 1y-5y 5y-100y > 1000y

addthis.com 2516 110 2345 - -
adsrvr.org 1328 1328 - - -
mmstat.com 1041 2 - 237 802
casalemedia.com 721 572 - - -
tapad.com 543 543 - - -
rlcdn.com 525 525 - - -
demdex.net 453 453 - - -
adsymptotic.com 447 447 - - -
baidu.com 433 - - 418 13
bluekai.com 340 340 - - -

Table 17: The top-10 known tracking cookies and their expiry periods (m=month, y=year).
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5.4.6 Fingerprinting APIs

We found a large number of fingerprinting APIs (total: 3,082,179, unique: 222) included

in the JavaScript source files used in hospital websites. Most common fingerprinting

APIs include: window.navigator (1,146,303), Storage (407,847), CanvasRenderingCon-

text2D (340,164), HTMLCanvasElement (133,657), hardware related APIs (32,394), win-

dow.screen (18,888), RTCPeerConnection (747), window.navigator.geolocation (722) and

AudioContext (291). We also found several fingerprinting APIs with acoustically relevant

characteristics of the audio signal — GainNode (49), AnalyserNode(110), OscillatorN-

ode(374) and ScriptProcessorNode (38). Combinations of multiple fingerprinting APIs

can be used to identify a user with a high precision [97].

5.5 Recommendations

Based on our analysis, we suggest a few possible mitigation strategies to reduce privacy ex-

posures to third-parties from the perspective of site developers and regulators. Developers

should analyze scripts used for tracking/fingerprinting, and use only those scripts that are

required for the proper functioning of the sites. Similarly, the use of session replay scripts

should be avoided, or at least configured properly to reduce the risk of data exposures.

Since software packages and applications are becoming a target for malware and supply

chain attacks (cf. SolarWinds [215]), developers should always scan the dependent soft-

ware packages/libraries to ensure that hospital websites do not inherit such vulnerabilities.

From our manual analysis, we observed that while the privacy policies of some hos-

pitals explicitly mention that they do not share any information with third-parties, several

sites still send personal information to session replay services such as Yandex and Hotjar.
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For example, sanfil.pt (in Portugal) explicitly states in its privacy policy7 that the in-

formation collected from users will not be shared with third-parties, while in reality, when

a user uses the online chat function available on the website, all the chat messages are

sent to Hotjar. In addition, despite the privacy policy8 of lifeclinic (in Greece), and user

agreement9 of rami-spb.ru claim that a user’s personal data will not be disclosed to

third-parties, personal information (e.g., username, phone, email and doctor’s speciality) is

leaked to Yandex. Therefore, regulators should invest into developing tools to detect such

contradictory statements and violations to improve data privacy in the long run. We also

observed that 33 of hospital websites are flagged as malicious by VirusTotal, possibly due

to the use of malicious third-party resources (e.g., the use of fake and malicious jQuery

libraries) in those sites. Therefore, developers need to be vigilant in including third-party

libraries in hospital websites, and should do proper scanning before using such dependen-

cies.

Hospital websites continue to expand its services in digital space; the COVID-19 pan-

demic also contributed to the recent rapid increase of online hospital services. Given

such growth, and the use of sensitive information at hospital services, proper safeguards

should be implemented to prevent potential privacy/security exposures. Furthermore, gov-

ernments should introduce and periodically review existing privacy regulations (e.g., the

US HIPPA [291]) to protect sensitive information pertaining to patient identity and health

records.
7https://www.sanfil.pt/cookies/
8https://www.lifeclinic.gr/privacy-policy/
9https://www.rami-spb.ru/Content/poljzovateljskoe-soglashenie-ob-

ispoljzovanii-sajta/4091
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5.6 Summary

Similar to other popular commercial sites, hospital sites include commercial trackers hosted

by top tech giants. We found that 10,417 (53.5%) hospital websites included such tracking

scripts/cookies; 4.2% (815/19,635) of hospital websites set tracking cookies that are valid

for more than 1000 years; 222 unique fingerprinting APIs were in included scripts found

in hospital websites. Furthermore, sensitive user information is relayed to remote servers

by including session replay scripts in hospital websites — Hotjar (469), Yandex (226),

FullStory (4).
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Chapter 6

Privacy analysis of religious websites

and mobile apps

6.1 Introduction

With the advancement of technology, significant changes are made as to how religious

practices are conducted during the last couple of decades [44]. The early online churches

simply used websites with static pages (e.g., scriptorium pages of religious texts) to share

information with an increased audience. Gradually, these websites started to include dy-

namic content hosting various interactive services (e.g., chat and messaging services, pod-

casts, videos of sermons, interactive worship). Also, with the proliferation of mobile de-

vices, religious services were offered through mobile apps [46]. The recent COVID-19

pandemic has also resulted in offering religious services through online social media plat-

forms (e.g., Facebook Live, YouTube) [210], and religious faiths in the United States have

strengthened due to the pandemic [219]; 57% of the adults in the United States who at-

tended religious services at least monthly, are now watching religious services online due

to the pandemic [219]; churches supplement their revenue using virtual offering (e.g., do-

nation) services. Unfortunately, various third parties included on religious online services
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to support various functionalities, are used to track users [108], and engage in privacy

violations [64] leaking sensitive information; a prayer app (Muslim Pro) that eases the

practicing of daily rituals prescribed in Islam, has leaked user location data to a broker

(X Mode), which in turn had sold the same information to its contractors (including US

military contractors) [176]; another prayer app (pray.com) sold the prayers of a grieving

user who suffered a tragedy [42]. Also, while the possible influences from artificial intel-

ligence (AI) technology on religious online services is still an under-studied area, potential

exposures of highly confidential conversations relating to spiritual needs of users through

chatbots (included on religious online services) will impact the privacy of users. In addi-

tion, security issues in religious online services can expose sensitive information of users;

the Vatican site was hacked and compromised (in 2020) [280] with the aim of stealing

sensitive information.

Past studies primarily discussed the evolution of digital religious communities from tra-

ditional religious institutions. Campbell [45] studied Internet trends and their implications

on religious practices (including social and cultural shifts) and challenges related to online

religious networks. The author observed that studying the religious practices of Internet

users leads to a more refined understanding of the complex interactions with online ser-

vices. Campbell et al. [46] provided a methodological approach to study religious-oriented

mobile apps available on iTunes app store. The authors reviewed 451 religious app func-

tions and their use, and group those apps into 11 categories.

In this work, we perform a large scale web privacy measurement of religious websites

and Android apps. To the best of our knowledge, this is the first measurement study on

privacy/security of religious online services, performed on a global scale. For the web pri-

vacy measurements, we use 62,373 websites collected from the URL Classification [163]

source, after filtering out false positives (i.e, non-religious sites) using VirusTotal [298]
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website categorizations. Thereafter, we crawl the extracted religious websites using Open-

WPM [223] web privacy measurement framework. We analyze the instrumented tracking

metrics (third party scripts/cookies, fingerprinting APIs) using the instrumented data saved

to the OpenWPM database. We identify religious websites that use session replay services,

by inspecting the traffic sent by potential sites including session replay services with HTTP

Toolkit [144]. In addition, we examine religious sites that send personal information to

external parties using the chatbot functionality. We look for leaked personal/sensitive in-

formation (e.g., name, email address, address, prayer requests, confessions, user’s location

provided for searches) from religious websites that use HTTP or configured to use ses-

sion replay. To find potential TLS vulnerabilities and weaknesses, we collect and analyze

TLS certificates of 45,004 religious websites. In order to find other vulnerabilities in reli-

gious websites (e.g., Cross Site Scripting, SQL Injection, Path Traversal), we scan 11,888

religious websites using the Wapiti scanner. We also collect religious Android apps, and

leverage MobSF [196], LiteRadar [182], and mitmproxy (with Google UI/Application Ex-

erciser Monkey), to perform static and dynamic analysis techniques (using a Pixel 6 phone).

However, we limit the security evaluation of religious online services due to possible legal

and ethical issues. We also use VirusTotal [298] to identify religious sites, Android APKs

and included third party domains hosting scripts/cookies that are malicious.

Contributions and notable findings.

1. We develop a framework to collect religious websites and Android apps by eliminat-

ing false positives from given external source(s), and a test methodology to evaluate the

privacy and security exposures from these religious websites.

2. 198/62,373 (0.3%) religious websites include session replay services — e.g., Full-

Story (fullstory.com), Inspectlet (inspectlet.com), Luckyorange (luckyorange.com), Yandex

(yandex.com). We observed that users’ personal/sensitive information is sent from the an-

alyzed religious websites to session replay services (FullStory, Yandex, Inspectlet). Such
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shared sensitive information includes name, phone number, address, email address, mes-

sage/comment, prayer request, location searches, login information, donation information,

and keywords used in site searches.

3. 19/11,888 (0.16%) religious websites were found to be vulnerable — SQL Injection

(9), Reflected Cross Site Scripting (7), Server Side Request Forgery (2), Path Traversal (1).

The Path Traversal attack (on christcc.org) exposes several local files under /etc directory

(e.g., /etc/password).

4. 7/1454 (0.48%) religious Android apps leaked sensitive information (e.g., user cre-

dentials, API key, phone number) from unprotected Firebase endpoints. In addition, 2 apps

(cdff.mobileapp, com.avrpt.teachingsofswamidayananda) sent user credentials/device in-

formation over HTTP.

5. 17,418/62,373 (27.9%) and 3569/62,373 (5.7%) of religious sites include commercial

tracking scripts and cookies, respectively. These trackers embed analytic and other third

party services (e.g., social media plugins) on religious websites. Google dominates in

tracking on both religious sites (32%) and apps (78%). There were tracking cookies that

expire after a long period of time (including 4 tracking cookies by center.io on 4 religious

sites that expire in year 9999). In addition, 1351/1454 (93%) of religious Android apps

included tracking SDKs.

6. 69/62,373 (0.11%) religious websites were flagged as malicious at least by 5 secu-

rity engines used by VirusTotal (e.g., samenleesbijbel.nl, csiholytrinitychurch.com). We

also observed 12 malicious domains set tracking scripts/cookies on religious sites. Addi-

tionally, 29/1454 (2%) religious Android apps were flagged by VirusTotal by at least one

security engine; islamictech.slfgo religious Android app was flagged by 10 security engines

in VirusTotal.

7. 14/24 ((58.3%) religious websites that use HTTP, sent personal/sensitive information
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(name, email address, phone number, address, message, prayer request, confession, date of

birth, password).

We disclosed our findings on security vulnerabilities of the 10 websites and 9 Android apps

to the corresponding admins/developers. We also notified Google about islamictech.slfgo.

6.2 Related work

Web privacy measurements. There are various privacy measurement studies that are per-

formed in the past. Englehardt et al. [97] implemented OpenWPM, a fully automated web

privacy measurement framework. Using OpenWPM, Englehardt et al. [97] performed a

web privacy measurement of the top-1M Alexa popular sites (mostly commercial sites),

and found Google and Facebook dominates in tracking. Samarasinghe et al. [239] mea-

sured tracking on 150,244 government websites and 1166 Android apps, and found com-

mercial trackers on those online services (mostly Google trackers), although it was un-

expected to have trackers on government sites that are funded by the taxpayers. Hoy et

al. [143] studied 102 church websites in the United States and found that they collect per-

sonal identifying information. The confidential information that are entered to church guest

books and prayer requests, were leaked from corresponding church websites. We studied

tracking on religious websites and found a larger proportion of those sites with Google

trackers (32%, 19,772 out of 62,373 websites). In addition, we found 22 websites leak sen-

sitive information of users (e.g., name, address, email, donation amount, prayer requests)

to session recording services.

Privacy analysis of mobile apps. Several past studies analyzed privacy and security is-

sues in mobile apps. For example, Binns et al. [34] studied 959,000 apps from US and

UK Google Play stores, and found that third party tracking follows a long tail distribution

dominated by Google (87.75%). Nguyen et al. [199] performed a large-scale measurement
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on Android apps to understand violation of General Data Protection Regulation (GDPR)

explicit consent. They found 28.8% (24,838/86,163) of apps sent data to ad-related do-

mains without explicit user consent. Several recent studies (e.g., [56]) analyzed COVID-19

tracing apps, and highlighted privacy and surveillance risks in these apps. In contrast, we

study privacy and security issues of 1454 religious Android apps and found Google specific

tracking SDKs in a large proportion (78%, 1132 out of 1454) of them.

Analysis of SSL/TLS certificates used in online services. Felt et al., [105] measured the

HTTPS adoption on the web, and found the number of top websites (from HTTPWatch

Global, Alexa top-1M, Google top-100) that use HTTPS (by default) doubled between

early 2016 and 2017. Alabduljabbar et al. [9] investigated the potential vulnerabilities

(SSL/TLS) in free content websites (FCW) and premium websites. The authors found 17%

and 12% of free websites have invalid and expired certificates, respectively. The authors

also found more FCWs (38%) use ECDSA signature algorithm compared to premium web-

sites (20%). We analyze TLS certificates of 45,004 religious websites and found 92.9% and

7.1% of HTTPS sites use RSA and ECDSA signature algorithms, respectively.

6.3 Methodology

In this section, we provide details of our website and apps collection methodology. Then,

we elaborate our privacy analysis and measurement techniques; see Figure 25 for an overview

of our methodology.

6.3.1 Collecting religious websites and Android apps

Religious websites. We acquired a list of 583,784 websites (on April 26, 2022) from URL

Classification [163] that are categorized as Religion; 448,646 (out of 583,784, 76.9%) are
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Figure 25: Overview of our methodology.

classified into multiple categories (including Religion). URL Classification provides a con-

fidence rank for classified categories of each website, and with manual inspection, we find

websites ranked 50 and above are likely religious sites; 202,968 (out of 583,784, 34.8%)

websites are ranked 50 and above. To ensure, false positives are eliminated, we scan the the

202,968 websites with VirusTotal [298], and filter 62,373 (out of 583,784, 10.7%) websites

that are flagged as Religion by at least one security engine included in VirusTotal.

Religious Android apps. We feed unique keywords related to major religions (i.e., Chris-

tianity, Islam, Hinduism, Buddhism) to Google-Play-Scraper [132], that crawls and ex-

tracts 2512 Android apps matching those search keywords from Google Play Store. We

eliminate false positives by manual inspection, and finally select 1454 apps for our analy-

sis.
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6.3.2 Web privacy measurements

We configure OpenWPM [223] web privacy measurement framework to run with 10 par-

allel browser instances in headless mode. We configure OpenWPM instrumentations for

HTTP requests/responses, JavaScript, cookies, DNS requests and callbacks. JavaScipt in-

strumentation also collects passive fingerprinting APIs included in religious websites. To

mimic a new request, and to avoid any influence from past browsing history, for each URL

visit, we clear the browser profile after each visit to a website. We use a physical machine

(connected to our university network) running Ubuntu server 20.4 LTS, 64GB RAM, 1TB

SSD, AMD Ryzen Threadripper 2950X 16-Core Processor for our measurements between

May 1, 2022 - May 7, 2022. A total of 62,373 religious sites were successfully crawled.

We also configure OpenWPM to save the site content to a LevelDB [174] database. The

instrumented tracking metrics extracted from OpenWPM are saved to an SQLite database

for further analysis. The saved information in the database contains both stateful (i.e.,

scripts/cookies) and stateless (fingerprinting) forms of tracking metrics. We then extract

scripts and cookies hosted on third-party domains (i.e., domains of scripts/cookies that do

not match the domain of the religious site that they are included). We use EasyPrivacy [92]

filtering rules that block third party trackers in religious sites to identify known third party

tracking scripts/cookies.

6.3.3 Session replay scripts and chatbot services in religious websites

We identify a list of known session replay scripts offering session replay services [115]

— FullStory (fs.js), Inspectlet (inspectlet.js), Lucky Orange (core/lo.js), Yandex (watch.js,

tag.js). Then we extract the religious websites (198 out of 62,373, 0.32%) that include those

scripts, from the javascript table of OpenWPM SQLite database. Thereafter, we inspect

these 198 sites manually, to identify possible personal/sensitive information leaked during

user interactions with the religious websites (e.g., while submitting messages and prayer
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requests, donating to religious institutions). During the interactions with these websites,

we use crafted data (e.g., name, email, date of birth, messages, amount for donations), but

do not submit the form, as input information is sent to remote servers, after each keystroke

during user input. Personal information is also sent during interactions with chatbots in

religious websites. We manually inspect the network traffic using HTTP Toolkit [144] to

identify information sent over the network.

6.3.4 Security issues in religious websites

Potential security issues in religious websites can cause privacy issues. In this section, we

discuss security issues in the analyzed religious websites.

Malicious religious websites. In order to determine if the religious websites and included

third party domains (hosting scripts/cookies) are malicious, we scan all 62,373 religious

websites, and included 1906 third party tracking domains using VirusTotal. Note that, at

least in some cases, VirusTotal engines1 may misclassify or delay in updating domain cat-

egorization labels [217]. We report domains that are flagged by at least 5 security engines

as malicious.

HTTP/HTTPS traffic and TLS certificates used in religious websites. We use Py-

OpenSSL [226] to collect the TLS certificates (in X509 format) of the analyzed religious

websites. Then we extract various information of the collected certificates — i.e., validity

duration, common name, issuer information (e.g., issuer name, issuer country, issuer or-

ganization), signature algorithm, public key size (for RSA only). We identify the protocol

used in each web request (i.e., HTTP, HTTPS). We also analyze the collected information,

to determine whether any of the religious websites send personal/sensitive information over

plain HTTP, or the associated certificates used in religious websites expose users to risks.

1https://tinyurl.com/2p8ynsfj (we exclude CRDF and Quttera for their unreliable results as
we observed).
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Other security issues in religious websites. We randomly selected 11,888 religious web-

sites (out of 62,373), and scanned them using the Wapiti [303] scanner to find other secu-

rity issues (e.g., Cross Site Scripting, Server Side Request Forgery, SQL Injection). Wapiti

crawls the web pages of a given website, and looks for scripts and forms in web pages

where it can inject payloads to identify vulnerabilities. We configured Wapiti to use 15

seconds as max-attack-time and max-scan-time, and scan up to a depth of 5 levels from the

base URL.

6.3.5 Android app analysis

Tracking SDK detection. We perform static analysis, using LiteRadar [182] by feeding

APK files of each of the religious Android apps. The output from this process includes the

tracking SDKs included in religious Android apps, the use of tracking SDKs, and requested

permissions (including dangerous permissions such as camera, contacts, microphone, SMS,

storage, and location).

Misconfigured Firebase database. Many Android apps, including religious apps, use

Google Firebase [126] (a widely used data store for mobile apps) to manage their back-

end infrastructure. However, due to possible misconfiguration, Android apps connected

to Firebase database can be vulnerable. Exposed data from Firebase vulnerabilities in-

cludes personally identifiable information (PII) and plain text passwords. We leverage

MobSF [196] to extract URLs of unprotected Firebase endpoints for each APK file, which

contains potential vulnerabilities; we then download the exposed data from the Firebase

datastore URL2 and check for apparent sensitive and PII items, including: user identifiers,

passwords, email addresses, and phone numbers. However, for ethical/legal considerations,

we do not validate the leaked information (e.g., login to an app using the leaked user cre-

dentials). Then we remove the downloaded datastore.
2The URL is of the form <Firebase project name>.firebaseio.com/.json (e.g., https://catholic-

connect-213606.firebaseio.com/.json).
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Dynamic analysis. We use a rooted Pixel 6 mobile phone with Android 12, to proxy traf-

fic from newly installed apps via mitmproxy [194]. To avoid collecting traffic from other

apps, we uninstall all other apps, except those apps required for basic functionalities (e.g.,

Camera, Google Play Store). A mitmproxy root certificate is installed on the phone. We

also install mitmproxy on a separate desktop machine to collect and decrypt HTTPS traf-

fic. Both the desktop machine and phone are connected to the same Wi-Fi network. We

use adb [123] to automate the installation, launch, and uninstallation of the apps. We also

use Monkey [124] with 5000 events (e.g., touch, slide, swipe, click) for each app; login to

app UI is not supported (if prompted). The network traffic is captured and stored in pcap

files. We use the captured network traffic to determine sensitive information (e.g., device

identifiers sent to trackers, leaked hardcoded user/admin credentials and API keys) sent to

external entities. We close mitmproxy and uninstall the installed religious app before mov-

ing to the next app.

Session replay from Android apps. We leverage the dynamic analysis to inspect third

party domains included in apps, to identify those known session replay services (e.g., Yan-

dex, Hotjar, MouseFlow, UXCam) to which apps send HTTP requests. For this exercise,

we use Burp Suite [222] to identify apps that send sensitive information to corresponding

session replay services.

Malicious domains and apps. We scan the APK files of 1454 religious Android apps with

VirusTotal. We also scan 1539 domains included in apps (as found in the network traffic)

with VirusTotal.

6.3.6 Ethical considerations and limitations

We do not use the sensitive information (e.g., user identifiers and passwords) extracted

from static and dynamic analyses of Android apps for any intrusive validations that may

have an impact to the privacy of users. In addition, we did not retain any data from exposed
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Firebase databases. The Wapiti black-box scanner we use to find vulnerabilities in reli-

gious websites, limits the scope of the scan only to the web page (e.g., add/remove query

parameters).

EasyPrivacy [92] filtering rules that we use are not comprehensive enough to identify

all possible tracking scripts/cookies set on religious sites (especially country specific track-

ers). We also resorted to use manual steps in verifying false positives/negatives of religious

websites and Android apps, which are not trivial to automate (e.g., inspection of sensitive

information relayed from session replay services to third parties). Android apps with ob-

fuscated code may have impacted our static analysis, but not so on our dynamic analysis.

Random clicks triggered from the UI automation that use monkeyrunner, may not precisely

target the specific targeted areas on the UI.

6.4 Results: Religious websites

6.4.1 Session replay and chatbot services

With session replay services that are included in websites, a user’s session is replayed

through the browser and sent to a remote third party; information replayed includes user

interactions on a website, such as typed inputs, mouse movements, clicks, page visits, tap-

ping and scrolling events. During this process, user’s sensitive information can be exposed

to third-party servers that host session replay scripts. We identified four session replay ser-

vices on the analyzed religious sites (62,373): FullStory (4), Inspectlet (5), Lucky Orange

(1), Yandex (187). The Lucky Orange session replay service was included only on one

analyzed religious site (discoverquran.com), and we found session replaying on this site

was disabled by the site owner. FullStory was used (e.g., in fbckahoka.org, emmausden-

ver.com) to replay requests for religious material and prayer requests by users. Inspectlet
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was used to replay meta-information (e.g., page title, browser information, dependent re-

sources of websites requested) of religious sites (e.g., gbcga.com, afci.com.au) browsed

by users, which can be leveraged for fingerprinting. We found personal information (e.g.,

name, email, phone, message, address, login ID), donation details (e.g., donation amount),

prayer requests and keywords used during site searches being replayed to Yandex session

replay services from 19 religious sites; see Table 18.

Furthermore, AI-based chatbots are being included in religious websites to emulate per-

sonal human conversations. Exposure of these conversations to adversaries may divulge

personal information of users. We observed chatbots of two religious sites shared personal

conversation to third parties: chertzumc.com transmitted user conversations in base64 for-

mat to an external domain (chat.amy.us), and immersivehistory.com sent user conversations

as is, over a websocket to a third party domain (socket.tidio.co).

Leakage type Religious site SRS Leaked information
Personal information glorygod.ru,

aglow.org.uk, noviza-
vet.ru, standrews.ru,
slovo-istini.com,
zhslovo.ru, sda-spb.ru

Yandex Name, phone number, email, address/city,
message

nehemiah.ru Yandex Location entered to search for the closest
church

mbs.ru, belchurch.org Yandex Login ID
solba.ru Yandex Email address used to subscribe for a

newsletter
Request for religious
material

fbckahoka.org FullStory Email address, sermon notes

Request for prayer fbckahoka.org FullStory Full name, email, phone, prayer request
solba.ru Yandex Name, message, donation amount of the

prayer request for a patient (Corona and
other diseases), and to succeed in stud-
ies/exams

Meta information of
site requests

lifeteen.com FullStory links clicked by users (relating to various re-
ligious missions)

gbcga.com Inspectlet Page title, URL browsed, browser infor-
mation (i.e., browser type, version, webkit,
user-agent).

afci.com.au Inspectlet URL and dependencies (CSS, JavaScript) of
the site browsed

bengalipdfbooks.info Yandex Links clicked by users
Donation details novizavet.ru Yandex First name, last name, donation amount

rpconline.ru Yandex Donation amount, mode of payment (e.g.,
bank card)

Keywords uses for
searches

new-church.ru, wol-
rus.org, sda-spb.ru,
kateheo.ru

Yandex Keywords used in site searches that may in-
clude sensitive information

Table 18: Use cases for information leakage with session replay services (SRS) on religious sites.

114



6.4.2 Religious sites with security issues

The Wapiti scanner identified security issues in 19 (out of 11,888) religious websites —

SQL Injection (9), Reflected Cross Site Scripting (7), Server Side Request Forgery (2),

Path Traversal (1); see Table 19 for examples of security issues in religious websites.

Christcc.org is vulnerable to the Path Traversal attack that exposes the local /etc/passwd

file. Although, user passwords are not revealed from the /etc/passwd file, the content

(e.g., full names, list of system users indicating software installed on the host) of it can

be used for reconnaissance and social engineering efforts, which may eventually lead to

reverse shells and local privilege escalations. The potential Reflected Cross Site Script-

ing attacks that can be launched by some websites (e.g., abccolumbia.org, christcc.org,

cogsabbath.org), are proof of the attacker’s ability to execute much more harmful attacks

(e.g., steal credentials, hijack user accounts, exfiltrate sensitive information) on users. The

same applies to religious websites (e.g., abccolumbia.org, aoffcc.com, welfarebc.com) sub-

jected to SQL Injection vulnerability, where the consequences from such attacks (e.g.,

unauthorized viewing of user data, removal of data from database tables, attacker gain-

ing database administrative rights) are far reaching. We also scanned religious Android

apps pertaining to these religious websites (for security issues) using Wapiti, and found

com.subsplashconsulting.s_R858KV (CCC Camp Hill, PA App) app that corresponds to

christcc.org religious website, contains 2 endpoints (https://app.easytithe.com/

AppAPI/api/account/churchInfo, https://app.easytithe.com/AppAPI/

api/account/paymentList) that are vulnerable to SQL Injection.
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Security issue Website Details of the security issue
Reflected Cross Site
Scripting (XSS)

spiritofmedjugorje.org This vulnerability is found via injection
of parameter ArticleSeq (e.g., https://
spiritofmedjugorje.org/index.php?
ArticleSeq=%3C%2Fscript%3E%3CScRiPt%
3Ealert%28%27wfj7hux5b6%27%29%3C%
2FsCrIpT%3E)

SQL Injection abccolumbia.org Injection of parameter media_id (e.g., https://
abccolumbia.org/video.php?media_id=
10%27%20AND%2092%3D92%20AND%20%2714%
27%3D%2714). The parameter value passed to me-
dia_id is decoded as 10’ AND 92=92 AND ’14’=’14

Path Traversal christcc.org Linux local files disclosure vulnerability via injection
of parameter path — exposes /etc/passwd, /etc/group,
/etc/hosts, /etc/host.conf, /etc/resolv.conf, /etc/profile,
/etc/csh.login, /etc/fstab, /etc/networks, /etc/services
files (e.g., https://christcc.org/vcf_
download.php?path=%2Fetc%2Fpasswd)

Server Side Request
Forgery (SSRF)

allsaintsphoenix.org SSRF vulnerability via injection of parameter url (e.g.,
https://allsaintsphoenix.org/s/cdn/
v1.0/i/m?url=http%3A%2F%2Fexternal.
url%2Fpage&methods=resize%2C500%
2C5000)

Table 19: Examples of security issues in religious websites.

6.4.3 Religious sites flagged as malicious

We found 69 (out of 62,373, 0.1%) religious sites were flagged as malicious by VirusTo-

tal (at least by 5 engines). We only considered sites that apparently were used for ma-

licious purposes according to VirusTotal category labels and community comments, con-

taining keywords including malware, compromised, infection, spyware, fraud, weapons,

command and control, bot network and callhome. We also observed 12 malicious domains

host tracking scripts/cookies on religious sites, as per VirusTotal (at least by 5 engines):

freecontent.date (modifies files in Chrome extension folder) and iclickcdn.com (website

redirected to malicious pages) were flagged as malicious by more than 10 engines. With

Retire.js [231], we found JavaScript sources (i.e., bootstrap, jquery, swfobject) included

in 3 religious sites (wierdapark-suid.co.za, divyabodhanam.org and divyabodhanam.org)

were using legacy script versions that are vulnerable to Cross Site Scripting.
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6.4.4 Analysis HTTP/HTTPS traffic from religious websites

We analyze the HTTP/HTTPS traffic and characteristic of TLS certificates used in religious

websites. We were able to extract 45,004 (72.2%, out of 62,349) websites that use HTTPS;

17,345 requests failed (e.g., because of timeout).

Use of HTTP in religious websites. We found 24 religious websites (out of 62,373, 0.04%)

use plain HTTP for communication. HTTP is not secure, and allow adversaries to listen

to the traffic sent from these websites, and capture sensitive personal information. We

found 14 out of 24 of religious websites that use HTTP, send personal/sensitive informa-

tion (first/last names, email address, phone number, address, message/comment, prayer

request/confession, date of birth/age, password) of users over the clear; see Table 20 for

top-5 religious websites that leak personal/sensitive information over HTTP.

Validity period of TLS certificates. Popular browsers (e.g.,

Google Chrome) have announced in 2020, SSL/TLS certificates

cannot be issued for more than 13 months (397 days) [221].
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Table 20: Top-5 religious websites with most leak-
ages of personal/sensitive information over HTTP
— DOB = Date of Birth, PR = Prayer Request

Larger validity periods make

it tedious to roll out changes

to cryptographic primitives

of certificates (e.g., update to

a stronger encryption algo-

rithm) by certificate issuers,

and to ensure the trust of an

identity (i.e., website’s do-

main). We found 590 (out

of 45,004, 1.3%) of the reli-

gious websites that use HTTPS have a validity period between 24-28 months in the issued

certificates; none of the certificate issuers of these certificates are free certificate authorities
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— e.g., Sectigo Limited (398), GoDaddy.com, Inc. (80), Starfield Technologies, Inc. (61),

DigiCert Inc (27).

Analysis of certificate issuers. We observed that the top-5 certificate authorities that issue

certificates for the analyzed religious websites are Let’s Encrypt (29,357/45,004, 65.2%),

cPanel, Inc. (4996, 11.1%), Cloudflare, Inc. (2945, 6.5%), GoDaddy.com, Inc. (2416,

5.4%), DigiCert Inc (1799, 4%). We also explored the country level distribution of TLS cer-

tificate issuing organizations, and found United States (42,618/45,004, 94.7%) and United

Kingdom (1724, 3.8%) dominates in the distribution.

TLS certificate signature analysis. We found 41,804 (out of 45,004, 92.9%) of HTTPS

religious sites use RSA signature algorithms — i.e., sha256 with RSA (41,697), sha384

with RSA (106), sha512 with RSA (1); all RSA signature algorithms use a pubic key of

at least 2048 bits. In addition, 3200 (out of 45,004, 7.1%) HTTPS religious websites use

ECDSA (Elliptic Curve Digital Signature Algorithm) signature algorithm — i.e., ecdsa

with SHA256 (2966), ecdsa with SHA384 (234). The ECDSA signature algorithm uses

shorter keys for the same security level as in RSA with larger keys. Although ECDSA is a

more efficient signature algorithm, recent studies found it is more vulnerable to attacks [9].

6.4.5 Third-party tracking scripts

We found 27.9% (17,418/62,373) of religious websites had at least one known tracker on

their landing pages, and a total of 359 unique known trackers. We observed popular non-

commercial religious websites include commercial trackers on them — e.g., churchofje-

suschrist.org (a top ranked religious website [255]) included third party scripts from 7

unique commercial tracking domains. The most common known commercial trackers on

religious websites were google-analytics.com (12,653, 20.3% of websites), googletagman-

ager.com (7064, 11.3%) and wp.com (3713, 6%); see Figure 26 for top-10 known tracking

scripts. Religious sites we analyzed, are often developed using WordPress and Squarespace
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website building services. The scripts included by the former are used for pixel tracking,

while the latter use analytics to track users. In addition, the Facebook (facebook.net) social

media plugin included in religious sites is used to collect information on users’ browsing

behaviors (e.g., websites and other apps visited), and share this information with other

third parties. Furthermore, the PayPal plugin included in religious websites (for online

donations) can also be used to track users.
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Figure 26: Top-10 known third-party tracking script sources on religious sites — the bars show
the number of religious sites with trackers (vertical axis to the left), while the line chart shows the
number of occurrences of trackers (vertical axis to the right).
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Figure 27: Top-10 known third-party tracking cookies set on religious sites — the bars show the
number of religious sites with trackers (vertical axis to the left), while the line chart shows the
number of occurrences of trackers (vertical axis to the right).
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6.4.6 Third-party tracking cookies

We found 3569/62,373 (5.7%) websites set tracking cookies.

Cookie expiry

Tracker #Sites 1m-1y 1y-5y > 5y

bidswitch.net 1165 1 1 -

adsrvr.org 686 - 690 -

rlcdn.com 517 4 513 -

id5-sync.com 454 390 - -

demdex.net 201 402 - -

statcounter.com 379 - - 379

casalemedia.com 342 2 343 -

crwdcntrl.net 298 298 - -

tapad.com 298 296 - -

eyeota.net 271 - 3 -

Table 21: The top-10 known track-
ing cookies and their expiry periods
(m=month, y=year).

The most number of cookies are set

by bidswitch.net (1165/62,373, 1.9%),

adsrvr.org (686/62,373, 1.1%) and rl-

cdn.com (514/62,373, 0.01); see Fig-

ure 27. Biblehub.com and biblegate-

way.com are top ranked religious web-

sites [255] that included cookies set by

42 and 16 tracking domains, respec-

tively; a cookie set by cpmstar.com (an

adware) on biblehub.com expires after 20

years. Cookies set by statcounter.com

(used for web analytics) expires after 5

years; see Table 21. We also found track-

ing cookies set by center.io on 4 religious

websites (zionbaptistva.com, lavendervines.com, effect900.com, catholicfundraiser.net)

expire in year 9999.

6.5 Results: Religious Android apps

Static analysis results: Tracking SDKs and exposed Firebase databases. With Li-

bRadar, we found a total of 7398 tracking SDKs (203 unique) on 1454 religious Android

apps. We also used LibRadar to check the usage types of these SDKs (e.g., Google Mobile

Services is used as a development aid, Google Analytics is used for mobile analytics). Sim-

ilar to religious websites, most tracking SDKs in apps were also from Google (1132/1454,
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78%) and Facebook (205/1454, 14.1%). Note that Google tracking SDKs are also used for

ad and mobile analytics. Although the collection of analytics can help provide a better user

experience and improve protection (e.g., fraud detection [206]), it can also be effectively

used for tracking/profiling. A notable example is the com.prayapp app that embedded 10

tracking SDKs (including Google and Facebook). The app collects personal information

(e.g., location, app usage), and apparently, the app owners also purchase data (e.g., gender,

age, ethnicity, religious affiliation) from third parties for better profiling [110]; they may

also share personal information to third parties (e.g., advertisers) for commercial purposes.

We found 55 (3.8%, 1454) religious Android apps exposed their Firebase databases

due to unprotected endpoints; 7 of these apps leaked sensitive information—e.g., user

name, password, phone number, email, profile picture, chat details, API key, device

type. However, we did not verify/use/store this info (deleted immediately after check-

ing the data types). Notable examples: Vedic Library (com.hinbook.library) — an app

that supports individual spiritual enhancement (100K+ installs), and Catholic Connect

(com.catholicconnect) — a social media platform to build and collaborate between Catholic

communities (10K+ installs).

Dynamic analysis results. Examples from what we observed from our dynamic analysis

include a Christian dating chat app (cdff.mobileapp, 1M+ installs), that sent login informa-

tion via HTTP to a domain owned by the same owner (christiandatingforfree.com). We

also found cdff.mobileapp and com.avrpt.teachingsofswamidayananda sent device infor-

mation (device ID, device model, device manufacturer, device operating system, screen

resolution) over HTTP to christiandatingforfree.com and avrpt.com domains, respectively

(both the apps and corresponding domains are owned by the same party). Such device data

can be used to passively track users by fingerprinting their devices.

Session replaying from apps. We found that the UXCam session replay service collected
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users’ location (i.e., GPS coordinates) from the Tabella Catholic app. Hotjar and Mouse-

Flow collected fingerprinting information from Muslim kids (e.g., device model) and Bud-

dhist Sangam (e.g., mouse events) apps, respectively.

Religious apps and 3rd-party domains flagged as malicious. 29/1454 religious apps

were flagged as malicious by VirusTotal: one app by 10 engines, eight apps by two engines

and 20 apps flagged by one engine. islamictech.slfgo (50K+ installations), is flagged as

malicious by 10 security engines. 8 apps included the Android.WIN32.MobiDash.bm [184]

stealthy adware that usually displays ads when the mobile device screen is unlocked. 8

apps contained the AdLibrary:Generisk [1] malware that steals information (e.g., Face-

book credentials). We also observed calls to two malicious 3rd-party domains by re-

ligious apps — jainpanchang.in and orthodoxfacts.org third party domains were in-

cluded in com.mosync.app_Jain_Panchang (Jain Panchang) and com.orthodoxfacts (Or-

thodox Sayings) religious Android apps, respectively. Jain Panchang requires the

WRITE_SECURE_SETTINGS3 Android permission, allowing the app to read/write secure

systems settings, which is not supposed to be used by third-party apps.

6.6 Recommendations

To safeguard the privacy/security of users using religious online services, from tracking and

privacy exposures, adherence to best practices is vital. Therefore, developers need to be

vigilant in including third party scripts/libraries in religious websites, and should do proper

scanning before using such dependencies. Privacy regulations require personal data used

to interact with religious websites to be protected; according to GDPR [101], personal data

relating to religious beliefs are deemed sensitive. However, we observed religious online

services do not fully comply with these regulations. Proliferation of privacy regulations

should drive faith based organization to partner with trusted service providers that comply

3https://tinyurl.com/489ee9xu
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with industry standards/best practices. In addition, routine risk assessments, audits and

inspections of the policies/procedures of religious online services should be carried out by

the owners of these services.

6.7 Summary

Online religious services raise concerns about user privacy. Information with deeply per-

sonal content shared by faith-based communities over online religious services are accessed

by various third parties (via tracking scripts/cookies, session replay) that include commer-

cial entities, governments (for surveillance purposes) [176]. We observed 196 religious

websites include session replay scripts pertaining to FullStory, Inspectlet, and Yandex. AI-

based chatbots included on at least 2 religious websites may divulge personal information

via user conversations with third parties. Security issues were detected in a few religious

sites, that may lead into privacy issues; 19 religious websites were vulnerable to security is-

sues (i.e., SQL Injection, Reflected Cross Site Scripting, Server Side Request Forgery, Path

Traversal); 69 websites were flagged as malicious by VirusTotal; 14 religious websites that

use HTTP, send personal/sensitive information over the clear. We observed 28% and 6% of

religious websites, included tracking scripts and cookies, respectively. Google dominated

in tracking on both religious websites and Android apps.
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Chapter 7

Cloaking behaviors of malicious websites

7.1 Introduction

Websites are often used to launch social engineering attacks. For example, phishing web-

sites exploit human weaknesses to steal sensitive user information; similarly, malware web-

sites employ techniques to deceive users to download malware (e.g., ransomware) infecting

user machines; cyber-criminals take advantage of ads hosted on low-tier networks using so-

cial engineering techniques [292]. Sophisticated phishing and malware websites hosted on

squatting domains are deployed to deceive users by impersonating websites of high pro-

file companies and organizations (the so-called elite phishing domains [282, 216]). The

domains hosting these phishing sites are subjected to typo-squatting (e.g., foxnewsw.com)

and combo-squatting (e.g., support-apple.com-identify.us). These phishing sites imperson-

ate trusted brand names using fake web content and typo-squatted domain names.

Additionally, phishing and malicious sites employ evasion techniques to avoid exposing

malicious content to search engine crawler as opposed to human users [261, 211, 156]. The

practice of displaying different content to a crawler as opposed to a browser/user is known

as cloaking. Cloaking helps attackers to reduce the possibility of getting their services

blacklisted. To discourage such practices, search engine providers also offer guidelines for
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website owners/maintainers—see e.g., Google [125].

There have been several studies on malware and phishing sites, albeit not so much

on squatting/elite phishing and malicious domains engaged in cloaking. Past studies on

cloaked malicious sites relied on specific types of websites and attacks (e.g., payment sites

and phishing). Tian et al. [282] found 1175 (0.18%) phishing sites that are likely imperson-

ating popular brands from 657,663 squatting domains (extracted from a collection of 224

million DNS records listed in ActiveDNS project [165]). They focused mainly on phish-

ing web pages identified using specific keywords from logos, login forms, and other input

fields (mostly credential phishing). Invernizzi et al. [156] studied web cloaking resulting

from blackhat search engine optimizations and malicious advertising, using websites re-

lating to luxury storefronts, health, and software. Oest et al. [203, 204, 202] used crafted

PayPal-branded websites, and impersonated websites targeting a major financial service

provider to study phishing. As such, the data sets used in these past studies do not cover

a wide variety of malicious URLs. Our methodology also includes capturing cloaking in

dynamic elements (e.g., iframes) of websites and taking semantics of web content into con-

sideration, which were not adequately addressed in the past; e.g., Tian et al. [282] did not

consider dynamically/JavaScript-generated page content due to high overhead.

We focus on understanding cloaking behaviors of a broad set of malicious sites hosted

on squatting domains. These sites engage in phishing, malware distribution, and other so-

cial engineering attacks. We use DNSTwist [85] to generate already registered squatting

domains that are potentially malicious. DNSTwist uses fuzzy hashing to identify malicious

squatting domains by comparing its web page content with the corresponding seed do-

main. The squatting domains extracted from DNSTwist host content from a wide variety of

possible malicious websites. To verify the ground truth of malicious squatting sites gener-

ated from DNSTwist, we adopt a semi-automated process leveraging the Symantec SiteRe-

view [271] tool, which significantly outperformed both commercial and academic tools
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(e.g., VirusTotal [298], Off-the-Hook [186]) in our manual tests; cf. Vallina et al. [294].

We compare page content between a search engine crawler and browser client to detect

cloaked malicious websites. For this purpose, we develop a crawler to collect page source,

links, content, screenshots, headers from websites hosted on squatting domains. To distin-

guish between dynamic vs. cloaked pages, we employ a set of heuristics; see Section 7.3.3.

To mimic a regular user browser (Chrome) and a search engine crawler (Google), we sim-

ply rely on custom browser user-agents and referrer headers. For the remainder of this

chapter, we use GooglebotUA, ChromeUA, ChromeMobileUA for search engine crawler,

browser (desktop) and browser (mobile) user-agents interchangeably. Attackers may also

leverage various evasion techniques to obfuscate the page-layout and HTML source, e.g.,

keywords in response headers to trick a search engine crawler [282], manipulate visual sim-

ilarity between a phishing and a corresponding benign site [211]. Hence, we also examine

the extent of such obfuscation in cloaked malicious websites.

Out of the 100,000 squatting domains (i.e., domain list category A in Table 22), VirusTo-

tal flagged only 2256 (2.3%) domains as malicious—in contrast to the ground truth (74%),

as verified via our semi-automated process. From the 100,000 squatting domains, we found

3880 (3.88%) as cloaked; 127 (i.e., 3.3% of 3880) of these cloaked domains are flagged by

VirusTotal—in contrast to our established ground truth (80%).

On dynamic sites, we observed different types of cloaked content (e.g., technical sup-

port scams, lottery scams, malicious browser extensions, malicious links) served to users

from the same domain at different times.1 The number of cloaked sites identified from

dynamic sites (861, 0.9%) is also significant, although it is certainly a lower bound as the

1Note that serving dynamic content to GooglebotUA by a website may not necessarily be treated as
cloaking. Response from a dynamic site to GooglebotUA may serve a non-dynamic version of the con-
tent that is tailored for that site (e.g., static HTML version), known as dynamic rendering; see: https://
developers.google.com/search/docs/guides/dynamic-rendering. Although with dy-
namic rendering, a static view of a dynamic website is shown to GooglebotUA, the response content rendered
to ChromeUA is dynamic. However, we consider serving significantly different content between ChromeUA
and GooglebotUA as cloaking (e.g., page about cats to GooglebotUA and a page about dogs to ChromeUA).
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dynamicity exhibited by these sites is inconsistent between consecutive requests.

Our results may be impacted by several factors: sites disallowing requests from auto-

mated crawlers, limitation of our heuristics, dynamicity of cloaking, and the use of SiteRe-

view for establishing our ground-truth. Still, our findings uncover several cloaking behav-

iors of malicious sites and our methodology can also help detect these sites at scale.

Contributions.

1. We measure cloaking in malicious websites between a client browser (ChromeUA)

and a search engine crawler (GooglebotUA) using a broader set of malicious do-

mains with a more comprehensive methodology compared to existing work. Our

technique improves the detection of cloaked malicious sites compared to past stud-

ies (e.g., cloaking in dynamically generated web content), and detect various scams

(e.g., deceptive prize notices and lottery scams) and malicious content (e.g., mali-

cious browser extensions) rendered in cloaked web pages.

2. Our methodology can identify 80% cloaked malicious domains from our ground

truth; the detection rate also remained consistent between repeated measurements.

For comparison, see e.g., Oest et al. [202] (detected 23% cloaked phishing sites in

their full tests), Invernizzi et al. [156] (detected 4.9% and 11.7% cloaked URLs with

high-risk keywords in Google advertisements and search results respectively), and

VirusTotal (3.3% with our own dataset).

3. We highlight the role of domain generation engines such as DNSTwist [85], which

can quickly provide a list of highly-likely malicious domains to serve as ground-truth,

especially if used along with our heuristics.
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7.2 Related work

In this section, we compare previous work on detecting malicious sites, analyzing resiliency

of blacklists, and the use of various heuristics to detect malicious sites. We also compare

our methodology and results with past work.

Vadreu et al. [292] studied social engineering attacks delivered via malicious advertise-

ments, and found 11,341 (16.1%) out of 70,541 publisher sites hosting malicious ads. Ex-

cept for lottery/gift (18%) and fake software (15.4%), Google Safe Browsing (GSB) [133]

detected only under 1.4% of other types of malicious ads (e.g., technical support). Tian et

al. [282] studied elite phishing domains targeting desktop and mobile users, and found sites

hosted on these domains were mostly used for credential phishing (e.g., impersonating of

payment, payroll and freight systems). They found 1175 out of 657,663 squatting domains

were related to phishing; as the source of their domain list, they used 224 million DNS

records in ActiveDNS project [165]). However, only 100 (8.5% of 1175) domains were

flagged as malicious by PhishTank, eCrimeX and VirusTotal (with 70+ blacklists). They

also compared evasion techniques between a desktop and a mobile client (Chrome). We

study search-engine-based cloaking (ChromeUA vs. GooglebotUA), focusing on various

types of malicious websites (beyond credential phishing).

Invernizzi et al. [156] studied variations in cloaking with search and advertisement

URLs. They used several cloaking detection techniques based on web page features, e.g.,

content, screenshot, element, request tree and topic similarities; we adopt some of these

techniques. In addition to static content analysis, we also analyze dynamic content. We

compare screenshots of web pages between ChromeUA and GooglebotUA using OCR to

find discrepancies in visual appearance (i.e., cloaking). Some of these discrepancies are

not detected by simply comparing the content, but by supplementing other methods (e.g.,

semantics of a web page). The differences in the meaning of a page’s content between

the crawler and the browser (i.e., semantic cloaking) are used to deceive a search engine
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ranking algorithm [313], where search engine operators are more likely to be duped with

the cloaked content. We use topic similarity evaluated using the LDA algorithm [246] to

identify the semantic differences of web pages between ChromeUA and GooglebotUA.

Oest et al. [202] presented a scalable framework called PhishFarm for testing the re-

siliency of anti-phishing and browser blacklists, using 2,380 phishing sites deployed by the

authors. Between mid-2017 and mid-2018, they found that the blacklisting functionality in

mobile browsers was broken and cloaked phishing sites were less likely to be blacklisted

compared to non-cloaked sites. The authors also mentioned blacklisting malicious web-

sites remained low for mobile browsers compared to desktop browsers. We also observed

a similar trend in our tests.

Rao et al. [229] used characteristics of a URL (i.e., hostname, full URL) to deter-

mine legitimate websites. Marchal et al. [186] used parts of a URL that are manipulated

by a phisher (e.g., subdomains, web application path) to detect phishing sites. Panum

et al. [211] reviewed highly influential past work to assess strategies with adversarial ro-

bustness to detect phishing. These strategies include distinguishing between phishing and

benign websites using visual similarity and leveraging URL lexical features. In our study,

we use DNSTwist to generate potential malicious typo-squatting domains using lexical in-

formation of seed domains.

In summary, past measurement studies [282, 164, 156, 292] are mostly focused on spe-

cific categories of malicious websites (e.g., phishing, malware, social engineering). Each

of these categories of websites may participate in cloaking. Several studies have used self-

crafted URLs hosting content of particular malicious categories (e.g., phishing) or brands

(e.g., PayPal) [203, 202, 282]. We use a broad set of registered squatting domains—combo-

squatting (HTTPS only) and typo-squatting domains, hosting different types of potentially

malicious websites to study cloaking behaviors.
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7.3 Methodology

In this section, we explain our methodology to study cloaking behaviors in phishing and

malware websites. We generate domains that may host potential phishing/malicious sites

and pass them as input to our crawler. Various features (e.g., headers, links, page source/content,

screenshots) are saved, and processed by an analyzer to identify cloaked sites and the re-

sults are stored into a database for further evaluation; see Fig. 28 for an overview of our

experimental setup.

7.3.1 Generating squatting domains

Attackers are more inclined to impersonate popular websites, both in content and domain

name, by hosting malicious sites on squatting domains [316, 318, 282]. These domains can

be categorized as typo-squatting or combo-squatting. The domain lists used in our work is

listed in Table 22. We generate 100,000 squatting domains (see list category A) using the

following methods. The squatting domains sampled from these methods are from possible

malicious domains.

List
label

Number of
domains

Experiment type

A 100,000 Cloaking is measured between ChromeUA and GooglebotUA
B 25,000 Cloaking is measured between ChromeUA and GooglebotUA

for desktop environment, and between ChromeMobileUA and
GooglebotUA for mobile environment. A random subset of do-
mains from list A is used.

C 10,000 Comparison of HTTP vs. HTTPS cloaked sites (5000 each)
hosted on combo-squatting domains. We use the same user-agents
as in list A to identify cloaked domains.

D 5000 Comparison of user-agent vs. referrer cloaking of sites hosted on
squatting domains. For referrer cloaking, we use ChromeUA with
referrer header: http://www.google.com.

Table 22: Squatting domain lists used in our experiments
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Typo-squatting domains from DNSTwist

DNSTwist [85] takes a specific domain name as a seed, and generates a variety of potential

registered phishing/malware domains. The domains generated in two consecutive runs of

DNSTwist are not the same. This is because DNSTwist passes the seed domain provided

to a function (DomainFuzz), which randomly generates many permutations of domain

names similar to the seed domain, but with typographical errors. To determine domains

hosting malicious content, DNSTwist use fuzzy hashes to identify sites serving similar

content as their original domains (using the ssdeep option).

We provide top 1983 Tranco websites [170] as seeds to DNSTwist. From Mar. 22, 2019

to Mar. 27, 2019, we generate 277,075 already registered, unique typo-squatting domains;

we then randomly choose 92,200 of these domains for our experiments (to save time). We

choose the timings of the extraction of domains around the same time as the actual crawling

of the sites, to ensure most of them are still responsive during crawling as typo-squatting

domains can be recycled quickly [282].

The typo-squatting domains generated from DNSTwist are of the following types, ex-

plained using google.com as the seed domain. (1) Addition: A character is added at

the end of the public suffix+12 segment of the domain (googlea.com). (2) Bitsquat-

ting: Flips one bit of the domain (foogle.com). (3) Homoglyph: visually similar

domains, although the characters are not the same as the seed domain (g0og1e.com).

(4) Hyphenation: A hyphen is added in between the characters of the seed domain (g-

oogle.com). (5) Insertion: A character is inserted in between characters of the seed

domain (goo9gle.com). (6) Omission: A character in the seed domain is removed

(goole.com). (7) Repetition: A character in the seed domain is repeated consecu-

tively, two or more times (ggoogle.com). (8) Replacement: A character in the seed

domain is replaced with another character (toogle.com). (9) Sub-domain: A period is

2A public suffix is defined as “one under which Internet users can (or historically could) directly register
names” see: https://publicsuffix.org.
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Figure 28: Our system setup.

inserted in between any two characters of the seed domain to transform it to a sub-domain

(g.oogle.com). (10) Transposition: Position of two characters in the seed domain is

swapped (gogole.com). (11) Vowel-swap: A vowel character is replaced with another

vowel (goagle.com).

Combo-squatting domains

Combo-squatting domains are concatenations of the target domain with other characters

or words. These domains generally do not have spelling deviations from the target, and

require active involvement from the attacker (e.g., social engineering); cf. typo-squatting is
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passive and relies on a user’s accidental typing of a domain name [164]. Combo-squatting

domains are also used in phishing attacks [282]. Therefore, we generate 7800 combo-

squatting domains as follows.

We collect top-50 sites of 16 categories (e.g., adult, business, computers, health, news,

shopping, sports), and top-50 Alexa sites specific to China—a total of 850. During our

preliminary manual verification, we observe a lot of phishing and malware sites are hosted

in China, and thus we choose Alexa top-50 sites from China.

Then, we identify domain names that partially match any of these 850 domains from

certificates that are used to host HTTPS phishing/malware sites in order to deceive legit-

imate users [147]. We only consider certificates issued after Jan. 1, 2019 to minimize

the collection of already recycled domains. We collect combo-squatting domains that serve

content over HTTPS between Apr. 4–9, 2019 using the following sources. (1) Censys: This

is a search engine [88] that aggregates information of networked devices, websites and cer-

tificates deployed. We check the subject common name field of certificates against our 850

target domains. (2) CertStream: The certificate data in Certificate Transparency (CT) logs

is polled over a websocket (wss://certstream.calidog.io) in CertStream [43].

We then check the common name field of certificates against our target domains.

To derive combo-squatting domains served via HTTP, we extract domain names from

the DNS A records from Project Sonar [224]. After extracting the domains running on port

80 that return a 200 response code (i.e., non-recycled domains), we partially match them

with the 850 target domains, to filter the combo-squatting domains that are derivations of

the top brands.

As many combo-squatting domains are benign (e.g., mail.google.com), we use

SquatPhish [268] to filter only those domains exploited for phishing that are derived from

above sources (i.e., Censys, CertStream, Project Sonar). SquatPhish leverages a machine

learning model to identify phishing pages based on the HTML source and text extracted
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from images included in a web page. We use SquatPhish to filter 7800 phishing domains

from 205,263 combo-squatting domains collected from the above mentioned sources. We

do not consider domains that return a 4xx or 5xx response code, as those domains may

already have been recycled.

7.3.2 Our crawler

To identify cloaking activity, we extract features from 100,000 web pages hosted on poten-

tial malicious squatting domains, using GooglebotUA and ChromeUA (and a subset of the

same websites by ChromeMobileUA). We use GooglebotUA, ChromeUA and ChromeM-

obileUA for our experiments by manipulating the “user-agent” field of the request header;

see 2.5 for a discussion on cloaking types.

We use Puppeteer [130] to implement our crawler. Puppeteer provides high level APIs

to control the Chrome browser and can be customized to run as headless to load dynamic

content before saving the web pages. Compared to other alternatives (including Sele-

nium [251]), Puppeteer offers the flexibility of handling failed requests gracefully and is

less error prone [282]. Tian et al. [282] also used a crawler based on Puppeteer. However,

unlike them, our crawler renders content that is dynamically generated before saving (Tian

et al. [282] chose not to consider content dynamically generated by JavaScript due to the

high overhead). We believe that dynamic source files (e.g., JavaScript, Flash) may render

differently based on the user-agent of a request (e.g., the list of links shown in an iframe

are benign for GooglebotUA, but malicious for ChromeUA). To identify web pages with

dynamic content, we request the home page of each website twice from GooglebotUA and

ChromeUA. The GooglebotUA and ChromeUA are represented as C and B, and the itera-

tions of requests from each client is 1 and 2, the sequence of requests made for a particular

website is labeled as C1, B1, C2, B2.
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Web servers may have heuristics to determine automated crawlers and reject their ser-

vice. We incorporated few mitigation steps in our crawler to minimize these effects; e.g.,

we manipulate webdriver, plugins and language properties of the navigator object of the

browser accordingly [155].

We crawl the sites hosted on squatting domains between April 10 to April. 13, 2019,

and run the crawler on 10 Amazon EC2 instances (c5.2xlarge) setup with Ubuntu 16.04 (8

vCPU, 16GB RAM). For our experiments, we do not consider sites where the differences

in content between GooglebotUA and ChromeUA are minor or benign. Some of these sites

redirect to non-malicious top-1M Tranco sites [170] from ChromeUA. There are also sites

that throw connection errors; see Section 7.4 for an overview of issues encountered during

crawling.

During crawling of each site, we gather features to identify potential cloaking activity

of possible malicious domains. These features include HTTP headers, page source/content

(both static and dynamic), links including those generated from dynamic content (includes

those in DOM objects within iframe elements) and screenshots.

7.3.3 Analyzer

The analyzer process applies heuristics to features of websites collected during crawling,

in order to identify cloaked websites. In this section, we explain the heuristics and rules

applied while processing the saved features. These heuristics are only applied if the HTML

page source and screenshots are successfully saved for all C1, B1, C2, B2 visits of a web-

site. The results evaluated by the analyzer are saved into a SQLite database.

Skipping domains with benign content

Domain name registrars (e.g., GoDaddy, Sedo) advertise domains available for sale on

their landing pages. The content of such landing pages sometimes differ slightly between
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GooglebotUA and ChromeUA. Since such differences should not be attributed to cloaking,

we skip those domains from processing. For non-English sites, we use Google translator

to detect the language of those sites and translate the content to English prior to process-

ing. For screenshots, we use the Tesserect-OCR [274] library to extract the textual content.

If the extracted text from a screenshot is non-English, Tesserect-OCR library takes a sig-

nificant amount of time to process (sometimes over 30 seconds). Therefore, we call the

Tesserect-OCR library for only those sites identified as cloaked with content dissmilarites

method using our heuristics described in Section 7.3.3. Some domains are redirected to

top-1M Tranco sites [170]. Legitimate companies may buy squatting domains to protect

users (a request to the possible squatting domain is redirected to the corresponding legiti-

mate site [316])—see Section 7.3.3. Therefore, we do not consider these domains for our

experiments.

Eliminating squatting domains owned by popular sites

Entities owning popular domains (e.g., top Tranco sites) buy squatting domains to safe-

guard its clients who may accidentally browse to those sites by mistyping their URLs.

These squatting domains may not always redirect a user to the original popular site. To

eliminate such domains from our measurements, we use the organization owning both the

squatting and corresponding popular domains using the WHOIS records [192]. If both

these domains are registered by the same organization, we disregard them from our analy-

sis. Out of all cloaked domains, only one squatting domain (expesdia.com) is owned

by the same organization (Expedia, Inc: expedia.com). Therefore, we eliminate the

particular domain from our analysis. However, the following types of squatting domains

are not eliminated from the analysis, as we cannot determine if those domains are also

owned by the corresponding popular domain’s organization: 8 domains with WHOIS reg-

istrant name/organization information recorded as “REDACTED FOR PRIVACY”, and 20
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squatting domains registered by Domains By Proxy [86] where the registrar itself is listed

as the WHOIS administrative contact.

Domains with exceptions

We observe that some sites do not allow automated crawlers to access them. This obser-

vation holds for both GooglebotUA and ChromeUA. Unfortunately, our automation cannot

determine potential cloaking activities in some sites that are prevented from accessing with

GooglebotUA. Some sites display failures such as “Too many requests“, “Page cannot be

displayed. Please contact your service provider for more details” and “404 - File or direc-

tory not found” when requested from our automated crawler. We experience such failures

despite the use of known techniques to avoid crawler issues with accessing websites [155].

However, upon manual inspection, we notice that some of these sites engage in cloaking.

Links flagged by blacklists

Target URLs hosting phishing or malicious content that are flagged by blacklists are of

different forms.

Sites redirecting to websites flagged by blacklists. We record URLs redirected from

squatting domains to websites that are also flagged by blacklists. We use VirusTotal to

determine how many of the redirected sites are flagged as phishing or malicious.

Identify links in iframes flagged by blacklists. We traverse the Document Object Model

(DOM) objects within iframes elements (including child iframes) of sites hosted on squat-

ting domains (level 1 URLs) to find dynamically generated second level links of sites that

are flagged by blacklists. A listing of such second level links appearing on an iframe of

a site is shown in Figure 29b. However, most of these links show a set of related third

level links when clicked on any one of them. These third level links will lead to actual

sites described in link descriptions. We run 5000 link URLs from each of these 3 levels
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through VirusTotal on a daily basis to identify if any of those are flagged as phishing or

malware. The first level URLs for this exercise is selected randomly from list category A

in Table 22. This help us find the rate at which link URLs hosting phishing or malware

content is detected by available blacklists.

Evaluate dissimilarities of website features

We evaluate the following dissimilarities based on the website features collected during

crawling. These heuristics facilitate in finding websites engaged in cloaking.

Header dissimilarities. Although title, keyword and description are not part of the standard

HTTP response header, adversaries appear to include these fields in the HTTP response

headers [313]. Therefore, we compare these fields between ChromeUA and GooglebotUA

to find instances of cloaking.

Link dissimilarities. We find the links in rendered web pages from GooglebotUA that are

missing from ChromeUA, and vice-versa. In addition, we also identify which of those links

are malicious using VirusTotal.

Content dissimilarities. We extract text surrounding h, p, a and title tags of the HTML

page source following rendering of dynamic source code (e.g., JavaScript). We also

consider HTML forms along with type, name, submit and placeholder attributes. Stop

words (e.g., the, a, an) are removed from the extracted content.3. Then we evaluate the

SimHash [54] of the extracted page source from GooglebotUA and ChromeUA, and com-

pute the hamming distance between them.4 If the hamming distance exceeds a preset

threshold (t1=20), we assume that the page is likely to be cloaked. We set the threshold

after manual verification, where we find t1=20 gives optimal results after removing benign

differences (e.g., pages having random session identifiers or timestamps). This threshold is

3https://pythonspot.com/nltk-stop-words/
4SimHash is a FuzzyHash that is used to identify similar documents. The difference between two docu-

ments is measured using the hamming distance–larger distance implies higher dissimilarity.
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also close to Tian et al. [282] (distance between 24 and 36). We set a second threshold t2

for pages with dynamic content. The same value (20) appears to be adequate in this case

too. We define a static page if the following is satisfied:

|FH(C1)− FH(C2)| = 0 AND |FH(B1)− FH(B2)| = 0; here FH represents FuzzyHash.

A static page is possibly cloaked if the following is satisfied:

|FH(C1)− FH(B1)| > t1 AND |FH(C2)− FH(B2)| > t1.

We also compare the semantics of a page between GooglebotUA and ChromeUA to

determine if the specific page is cloaked. We identify the most prominent topic of a page

(i.e., topic of the page content with highest probability) using the Latent Dirichlet Alloca-

tion (LDA) algorithm [246]. A topic in LDA is a set of related words extracted from the

document with probabilities of their prominence assigned to them. If Tb and Tc are the

most prominent topics corresponding to page content from GooglebotUA and ChromeUA,

the static page previously identified as likely to be cloaked has a high probability of being

cloaked when Tb ! = Tc. Similarly, a page with dynamic content is cloaked if:

(|FH(C1)− FH(C2)| > t2 OR |FH(B1)− FH(B2)| > t2) AND

(|FH(C1)− FH(B1)| > t1 AND |FH(C2)− FH(B2)| > t1)

AND Tc ! = Tb.

Image dissimilarities. Using the page content at source code level to determine cloaking

may not be sufficient, and it should be complemented with the visual differences of the

page (i.e., screenshots). This is because, content rendered by dynamic source code (e.g.,

JavaScript, Flash) and advertisement displayed cannot be captured from the page source.

Therefore, with this method, we follow the same procedure as for Content dissimilarities,

except that we use ImageHash as the FuzzyHash to evaluate the differences of screenshots

between GooglebotUA and ChromeUA. Very small color perturbations (between benign

and malicious views) in the space of humans yield significant changes in the binary repre-

sentation [211] of a web page screenshot.
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7.3.4 Limitations

We exclude sites that our crawler could not reach. Also, the number of cloaked sites we

identify is a lower bound due to the choice of our heuristics. According to our observations,

some cloaked sites with dynamic content show distinct content at different times (cf. [202]).

Therefore, our results with dynamic sites are a lower bound and is based on content ren-

dered at the time the request is initiated from the automated crawler, where these results

may differ on each request for dynamic websites.

Both academic and commercial tools available are not accurate in categorizing so-

cial engineering sites hosted on squatting domains in the wild; e.g., Off-the-Hook [186]

gives false negatives for typo-squatting domains, SquatPhish [268] mostly detects creden-

tial phishing. However, we observe that the Symantec SiteReview tool detects malicious

squatting domains at a comparatively higher accuracy (42.6%). SiteReview accepts the

domain URL as input, but not the page content. For dynamic websites, the content viewed

by our crawler may not be the same as what is analyzed by SiteReview (i.e., view of a web

page may change with time due to dynamic behavior). Therefore, we have limited control

in identifying the content category of a site using the SiteReview tool.

7.4 Issues during crawling

In this section, we explain the errors, disallowing of requests by web servers and failures

encountered during crawling of websites. The data shown in this section are based on

squatting domain list category A in Table 22.

Errors during crawling. We crawled 100,000 sites hosted on squatting domains by imi-

tating the ChromeUA and GooglebotUA user-agents. Out of them, 9712 (9.7%) and 9899

(9.9%) requests encountered errors during crawling from ChromeUA and GooglebotUA.

Requests initiated from GooglebotUA had a slightly higher number of errors. Table 23
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shows the top 5 errors. Most errors were due to timeouts; ChromeUA (4423, 4.54%),

Error ChromeUA GooglebotUA
Navigation Timeout Exceeded: 30000ms exceeded 4423 4502
ERR_NAME_NOT_RESOLVED 1640 1594
Execution context was destroyed, most likely because of a navigation 893 584
ERR_CONNECTION_REFUSED 820 608
ERR_CERT_COMMON_NAME_INVALID 343 341

Table 23: Top 5 errors encountered during crawling

GooglebotUA (4502, 4.5%). We set a 30 seconds timeout for each request made from

the crawler, as it is a reasonable time interval within which a web page can load. Setting

a higher timeout value not only reduces our ability to crawl a larger number of URLs

within a reasonable time period, but also increase the chance of crashing the crawler.

If the timeout is increased from 30 to 60 seconds, we were able to successfully crawl

more sites, although adhoc crashing of the crawling automation is experienced. However,

in this case, the timeout errors observed was lower than having a 30 seconds timeout;

ChromeUA (3418), GooglebotUA (3745). ERR_NAME_NOT_RESOLVED are DNS re-

lated errors that are most likely to be caused by issues related to client browser issues or

firewall settings [213]; ChromeUA (1640, 1.6%), GooglebotUA (1594, 1.6%). To validate

this aspect, we crawled sites that resulted in ERR_NAME_NOT_RESOLVED errors from

a separate residential machine located in the same city, and found a significant propor-

tion of them didn’t show this error; ChromeUA (316, 0.3%), GooglebotUA (380, 0.4%).

Some of these sites even didn’t return an error from the new location; ChromeUA (219,

0.2%), GooglebotUA (263, 0.3%). ERR_CONNECTION_REFUSED errors are usually

caused by DNS, proxy server or browser cache issues. Some sites threw errors due to

loosing of its execution context. This can happen when a web page looses its execution

context while navigating from the crawler. Therefore, running a callback relevant for a

specific context that is not applicable during the current navigation can throw an error.

ERR_CERT_COMMON_NAME_INVALID errors signal a problem with the SSL/TLS

connection where the client cannot verify the certificate.

Failures based on user-agent. Web hosting providers often block clients with unusual
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Failure ChromeUA GooglebotUA
Too many requests 2640 2448
Page cannot be displayed. Please contact your service provider for more details 1368 1369
404 - File or directory not found 72 472

Table 24: Failures while crawling

traffic. We observed 152 (0.2%) sites were blocked from GooglebotUA by the web host-

ing provider. In order to block requests from bots (e.g., GooglebotUA), web hosting ser-

vices use different techniques to identify them [248]. For example, honeypots consisting

of links that are only visible to bots are used to attract crawlers, to detect and have them

blocked [248]. Different types of content observed in these blocked sites are in Table 25.

Content of some of these sites are in Chinese (e.g., http://diirk.com). Also, dur-

ing our crawling, we noticed some sites did not accept requests initiated from automated

crawlers. These failures depend on the user-agent of the request. We show these failures in

Table 24. Some sites showed “Too many requests” failures when requesting a site from both

GooglebotUA and ChromeUA. This behavior was consistent between ChromeUA (2640,

2.6%) and GooglebotUA (2448, 2.4%). This failure was also observed from a real browser

when the site was requested repeatedly. We found “404 - File or directory not found” errors

were more than six times higher with GooglebotUA (472, 0.5%) compared to ChromeUA

(72, 0.07%). The robots.txt file which is in the root directory of a website can be config-

ured to prevent automated crawlers from requesting the site [248]. However, some of these

sites may not want to block popular search engine crawlers such as Google, as otherwise

it will impact their site ranking. We found 19,040 (19%) websites were disallowed accord-

ing to the rules in robots.txt which is significant. Our crawler is able to scrape the content

of these websites. From these sites, 4722 (4.7%) showed benign content, and the rest of

them mostly contained a listing of links and phishing/malware related content. Out of the

sites that are disallowed from robots.txt, a smaller fraction showed “Too many requests”

failures; ChromeUA (1583, 1.5%) and GooglebotUA (1460, 1.4%).
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Page content No. of sites Example site
Sorry, you have been blocked. You are unable to access [DOMAIN] Why have I been
blocked? This website is using a security service to protect itself from online attacks. ....

136 http://dawng.com

Your request has an illegal parameter and has been blocked by the webmaster settings!...
(Chinese translation)

12 http://diirk.com

..Access to this page has been denied.. An action you just performed triggered a security
alert and blocked your access to this page. This could be because you submitted a SQL
command, a certain word or phrase, or invalid data. ...

4 https://support.
bed-booking.com

Table 25: Sites blocked from GooglebotUA

7.5 Ground truth

Some sites hosted on squatting domains are malicious and they may engage in social en-

gineering attacks of various forms such as credential phishing, spear phishing, tech scams,

and social engineering ad campaigns. However, most existing tools detect only particular

types of social engineering attacks. For example, SquatPhish [268] is a machine learn-

ing model to detect phishing sites with input fields (mostly credential phishing). Off-the-

Hook [186] is a client side browser extension capable of detecting most forms of phishing

pages but does not support the detection of sites hosted on squatting domains. We find

Symentec’s SiteReview online tool is very effective in correctly categorizing most social

engineering sites compared to other tools. Although the accuracy of the ground truth de-

termined from SiteReview may not be perfect, from our manual analysis, we found it to be

reliable. However, it does not offer any API to automate the malicious domain detection.

Note that SiteReview appears to use the RIPE Network Coordination Center (NCC) [233]

to categorize websites.5

5Bluecoat, the original developer of SiteReview (acquired by Symentec) is a member of RIPE NCC, see:
https://www.ripe.net/membership/indices/data/eu.blue-coat-systems.html
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We hosted a web page on a Microsoft Azure cloud domain that closely resembles con-

tent of a malicious site, and submitted the page to SiteReview which categorized the site as

Suspicious within 24 hours. Our web page is not shared with anyone or have any backlinks

that are used for search engine optimizations (SEO). During this time, we notice requests

only from IP addresses assigned to RIPE NCC every hour. A Chrome user-agent is used by

all these access requests to our page.

We use SiteReview to identify categories of 3880 cloaked and 3880 non-cloaked do-

mains. The cloaked domains are identified using the content dissimilarities method in

Section 7.6.3. Some of these cloaked and non-cloaked domains are flagged as malicious

by SiteReview. 171 cloaked and 187 non-cloaked domains were unreachable during our

tests. The number of cloaked malicious domains flagged by SiteReivew (1636, 44.11%) is

significantly higher compared to that of non-cloaked malicious domains (1022, 27.67%);

see Table 26.

Category Cloaked domains Non-cloaked do-
mains

Suspicious 1550 (41.79%) 920 (24.91%)
Malicious Sources/Malnets 56 (1.51%) 71 (1.92%)
Scam/Questionable Legality 11 (0.30%) 12 (0.32%)
Phishing 13 (0.35%) 9 (0.24%)
Spam 4 (0.11%) 4 (0.11%)
Potentially Unwanted Software 1 (0.03%) 3 (0.08%)
Malicious Outbound Data/Botnets 1 (0.03%) 3 (0.08%)
Total active domains 3709 3693

Table 26: SiteReview categorization of malicious squatting domains - cloaked vs. non-cloaked

We classify (1024) active cloaked domains (as of Oct. 15, 2019) using a semi-automated

process with SiteReview to identify how many of them are malicious. During this process,

we reclassify sites that SiteReview failed to classify or misclassified. This semi-automated

process is used to determine the ground truth as described below.

• We found 413 sites serving content related to social engineering attacks (SEA); 383
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suspicious sites with content that poses an elevated security or privacy risk; 23 ma-

licious sites; 5 phishing sites; and 2 sites with potential unwanted programs. Some

sites are classified into more than one of the mentioned categories.

• SiteReview was unable to classify 361 sites, labeled as “not yet rated (NYR)”. With

manual inspection, we observed that some NYR sites show content similar to soical

engineering attack (SEA) sites. Therefore, for each of the NYR sites, we compute

the SimHash [54] of the page source, and then compare the SimHash value with all

SEA sites. We classify a NYR site as SEA, if the hamming distance between the

SimHashes of the NYR and SEA sites is under 20, and the hamming distance is the

lowest between the NYR site and any one of the SEA sites. For example, assume

that the NYR site xyz shows similar content as sites in SEA categories A and B with

hamming distances of 8 and 5, respectively; then we label xyz as of category B. With

this approach, we could correctly classify 306 NYR sites as SEA (out of 361).

• SiteReview classified 250 sites into benign categories. With manual inspection, we

found 102 false positives in this categorization (i.e., malicious sites classified as be-

nign); 2 Chinese sites, 1 deceptive site flagged by Google Safe Browsing [133], 80

sites with iframes that include links to malicious targets, 17 sites with promotional

contests (e.g., online casino), 1 shopping site and 1 site showing that the operating

system (Windows 10) is infected.

From the above mentioned observations, we found a total of 821 malicious sites

(413+306+102) in different social engineering categories from the 1024 cloaked sites.

Therefore, the percentage of malicious sites from those that are cloaked is 80.2%. This

value may change due to the dynamicity of the content rendered from these cloaked sites

(i.e., some sites alternatively show benign and malicious content during successive requests

and at different times). We emphasize that SiteReview is only used to validate our ground

truth, and our methodology is not dependent on SiteReview.
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We also apply the ground truth analysis to sites hosted on 1500 randomly selected

squatting domains generated from DNSTwist (from list category A in Table 22) and found

74% (1110 of them are malicious. These squatting domains contain both cloaked and

uncloaked sites.

7.6 Dissimilarities

Sites with content discrepancies between GooglebotUA and ChromeUA may be cloaked,

assuming differences are due to evasion techniques adopted by adversaries. In this section,

we delve into such differences using the domain list category A in Table 22.

7.6.1 Link dissimilarities

We evaluate the number of links in web pages that appear with ChromeUA, but not with

GooglebotUA, and vice-versa. We found that 21,616 distinct links appeared in ChromeUA

(1557 sites), compared to 10,355 links in GooglebotUA (1235 sites); i.e., ChromeUA ob-

served over twice the number of links compared to GooglebotUA.

Dynamic pages rendered from both ChromeUA and GooglebotUA show listings of

advertisements links. These links changed on successive refreshing of the page from the

same client or with different clients (e.g., ChromeUA and GooglebotUA).

7.6.2 Header dissimilarities

We inspect the title, description and keywords header fields to find the sites where the

header fields are different between GooglebotUA and ChromeUA.

Apart for the title header field, description/keywords fields in headers had significant

discrepancies with GooglebotUA. Upon manual inspection, we observed that the dissimi-

larities in title & description header fields were benign as they mostly contained the domain
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Header # diff # only with
GooglebotUA

# only with
ChromeUA

Title 2644 2190 3388
Description 3530 4839 1375
Keywords 265 716 408

Table 27: Header dissimilarities—the last two columns show the number of the specific header type
that exists only from one user-agent (empty in the other)

name or content that relate to sale of the domain. According to Table 27, 716 sites had the

keywords header field injected only with GooglebotUA (e.g., health, wellness, surgery) and

its use may had an impact in improving the rank of those websites. Many keywords added

to HTTP headers were sent to the crawler to perform semantic cloaking [313].

7.6.3 Content dissimilarities

We compare pages rendered between ChromeUA and GooglebotUA using syntactical and

semantic heuristics as defined in Section 7.3.3. Sites that show benign content (e.g., website

under construction) are excluded. While cloaking is prevalent in static pages, we also

observed cloaking in pages with dynamic content. In the case of the latter, a significant

number of sites showed cloaking behaviors at random when they were requested repeatedly.

Failure # Content dis-
similarity

# Image dissimi-
larity

HTTP 404 Not Found 398 0
HTTP 403 Forbidden 349 302
“Coming soon” 244 64
HTTP 500 Server Error 14 0

Table 28: Failures from GooglebotUA

With our automated process, we found 2183 (2.2%) sites with static content and

83 (0.08%) sites rendering dynamic content were cloaked by examining the page

source/content using heuristics; see Table 30. Out of them, 1763 (1.8%) and 42 (0.04%)

sites serving static and dynamic content were redirected to other URLs respectively. The

top 5 target URLs where these sites were redirected (for both static and dynamic sites) were
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plt2t.com (27), yourbigprofit1.com (24), www.bate.tv (10), yvxi.com (8)

and www.netradioplayer.com (7). Out of these target domains, plt2t.com redi-

rected to another website that showed “your computer was locked” scam message occa-

sionally, with the aim of getting the victim to call a fake tech support number.

With content dissimilarities With image dissimilarities
Protocol Content

type
Cloaked
sites

Redirects Cloaked
sites

Redirects

HTTP static 192 166 142 118
dynamic 21 7 22 7

HTTPS static 52 36 37 27
dynamic 3 2 1 1

Table 29: Combo-squatting domains served via HTTP/HTTPS

Most cloaked sites (361) from the squatting domain list category A in Table 22 had a

content length difference of 1-10 KB between ChromeUA and GooglebotUA, compared to

121 cloaked domains that had a content length difference greater than 10 KB. Although

this implies that in most cloaked sites, the content length difference between ChromeUA

and GooglebotUA is minimal, the difference in presented content may be significant due to

the use of dynamic rendering technologies (e.g., AngularJS, Puppeteer).

Phishing sites often adopt HTTPS to give a false sense of security to the victim users

(see e.g., [202]). In Table 29, we compare cloaked vs. non-cloaked sites served via HTTP

and HTTPS (using combo-squatting domains, category C in Table 22); cloaking is less

apparent in HTTPS sites, where majority of the certificates (55) are issued by the free

certificate provider Let’s Encrypt.

We observed the following major content differences between ChromeUA and Google-

botUA:

• Out of 100,000 squatting domains in list category A of Table 22, 2337 sites appeared

to be dynamic only from GooglebotUA, and 2183 from ChromeUA. No overlap in

domains was observed between GooglebotUA amd ChromeUA. We were unable to
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(a) CheomeUA (b) GooglebotUA

Figure 29: Cloaking differences for site: 000wwebhostapp

differentiate the content of these sites between GooglebotUA and ChromeUA, as

when checked manually, the most probable topic of the page content as determined

by Latent Dirichlet Allocation (LDA) algorithm [246] differed drastically on each

request due to dynamic nature of the sites. Among these sites, there were also sites

displaying dynamically populated links within iframe elements from ChromeUA,

while such iframes appeared to be empty from GooglebotUA. These links related to

various areas of businesses (e.g., Car Insurance, Credit Cards).

• The failures with content dissimilarities in Table 28 were observed from Google-

botUA, while with ChromeUA a different view of the content was displayed. For

examples, the websites that showed “Coming soon” page content from Googlebo-

tUA, showed the actual page content when requested from ChromeUA. Malicious

sites also returned error codes when they detected the visitor was not a potential

victim [202] (e.g., a search engine crawler).

Figures 29 to 31 are examples of instances where cloaking was used for phishing/malware

purposes.
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(a) CheomeUA (b) GooglebotUA

Figure 30: Cloaking differences for site: homdedepot.com

(a) CheomeUA (b) GooglebotUA

Figure 31: Cloaking differences for site: bodybuildinh.com

7.6.4 Image dissimilarities

We also determine cloaking by comparing the differences of screenshots of web pages be-

tween ChromeUA and GooglebotUA using image dissimilarity techniques. The number of

sites with static content subjected to cloaking was 1710 (1.7%), while those with dynamic

content was 784 (0.8%). We observed 960 (1%) and 490 (0.5%) of these sites with static

and dynamic content, respectively, were redirected to other websites. In contrast to content

dissimilarity method, with image dissimilarity, we found more cloaked sites that were also

dynamic.

Page content alone is insufficient to detect cloaking due to technologies used in web-

sites (e.g., Flash) that render dynamic content. Visual identity of a benign website can be

shared by a malicious website with undetectable perturbations to humans, although their

binary representations are completely distinct [211]. In addition, advertisements on web
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pages can be more tailored to a specific client, and may be hidden from GooglebotUA.

The failures as identified from image dissimilarity technique in Table 28 were only ob-

served from GooglebotUA. Although with image dissimilarity technique, the detection of

cloaking was better, the text extracted from screenshots using the Tesseract [274] OCR

library was sometimes inaccurate. For example, Tesseract reads “Coming soon” as “Com-

ing scan”. Despite our manual efforts to minimize the impact of these inaccuracies, the

inaccuracies of Tesseract may have affected the accuracy of the results in Table 28.

Cloaking of domains served via HTTPS giving a false sense of security to users were a

fraction when compared to those domains using HTTP; static content (37, 26%), dynamic

content (1, 5%). There were 38 (0.04%) cloaked sites running on combo-squatting domains

with valid TLS certificates as shown in Table 29.

7.6.5 Comparison of results of cloaking detection techniques

The dissimilarities techniques we use to identify cloaked sites focus on different structural

elements of a web page. The results of content and image dissimilarities converge to some

extent as they are applied on the syntactical and visual perspectives of the page content.

With link dissimilarities technique, we observed links are more prevalent with ChromeUA

as opposed to GooglebotUA (for both static and dynamic content). The links shown in

web pages hosted on domains were 209% and 140% for static and dynamic pages from

ChromeUA compared to GooglebotUA. However, the links appeared in dynamic content

were 6x and 9x when compared to static content with ChomeUA and GooglebotUA, respec-

tively. This may mean that phishing/malware domains suppress links from GooglebotUA

to avoid detection.

We also observed keywords in headers from GooglebotUA that were not seen from

ChromeUA. These keywords that were exclusive to GooglebotUA may influence the search

engine ranking algorithms for corresponding sites. With header similarities technique, the
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keyword header fields related to specific categories of content appeared only with Google-

botUA. Therefore, these keyword header fields may possibly have been leveraged to ma-

nipulate the rankings of websites.

With content and image dissimilarities methods, we find cloaked websites from both

static and dynamic websites with potential malicious content. With both content and image

dissimilarity methods, we found a very small fraction (3880, 3.9%) of domains participate

in cloaking. There were 880 cloaked sites that overlap between content and image dissim-

ilarities. Out of 3880 sites 127 (3.3%) were flagged by VirusTotal. However, according

to our ground truth (see Section 7.5), 80% of the cloaked sites were malicious. The low

detection rate of malicious sites by VirusTotal highlights that blacklists are not effective

in identifying a large proportion of social engineering sites. With image dissimilarities, a

larger number of cloaked sites were found with dynamic content compared to content dis-

similarities. Conversely, a large number of cloaked websites were identified using content

dissimilarities with static content compared to image dissimilarities. Identifying dynamic

content is more effective by analyzing the screenshots of web pages, as dynamic content

may not be captured from the page source. Some of the cloaked sites that are dynamic,

rendered different content on each refresh of the page. In some sites, benign and cloaked

content were rendered alternatively when the page is refreshed multiple times. Since the

dynamicity of sites depends on the time accessed, our results are a lower bound.

Manually inspecting 100 cloaked sites (from list category A in Table 22), we found

22 (22%) of them had differences in content. Few examples of differences in site con-

tent between ChromeUA and GooglebotUA are shown in Figures 29 (deceptive prize no-

tice), 30 (technical support scam), 31 (prompting to install a malicious browser extension).

The browser extension in Figure 31 (ByteFence Secure Browsing6) is a known malicious

6https://botcrawl.com/bytefence-secure-browsing/
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browser extension detected by reputable antivirus engines due to suspicious data collec-

tion habits and browser redirects. Most of these sites served content that changed between

subsequent requests and at times alternated between malicious and non-malicious content.

7.7 Discussion

We discuss below observations from our analysis in Section 7.6.

7.7.1 Dynamicity in squatting sites

We found few squatting domains (644. 0.6%) showed dynamicity in rendered content that

changed between two consecutive requests with ChromeUA. Since, dynamic sites can serve

different content only after multiple requests or change between static/dynamic content

alternatively, our results are a lower bound. Therefore, detection of dynamic sites with

cloaked content is difficult compared to that of static sites. There were 83 cloaked sites

identified using content dissimilarities in Section 7.6.3 out of the 644 dynamic sites. These

cloaked dynamic sites changed between consecutive requests to show various forms of

malicious content (e.g., technical support/lottery scams, malicious browser extensions).

7.7.2 Malicious squatting domains generated from DNSTwist

DNSTwist [85] uses fuzzy hashes,7 to identify malicious sites, by comparing the fuzzy

hashes between web page content of a seed domain and the corresponding typo-squatting

domain. For a 100% match, the typo-squatting web page content is similar to content

hosted on the corresponding seed domain (includes situations where typo-squatting do-

main redirects to seed domain). When the comparison returns a match of 0, the web page

7ssdeep: https://ssdeep-project.github.io/ssdeep/index.html.
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of the typo-squatting domain is most likely malicious. Out of 119,476 typo-squatting do-

mains generated from DNSTwist, 76,178 (63.76%) returned a match of 0. We randomly

selected 500 typo-squatting domains from list category A in Table 22, and found 187 mali-

cious domains (37.4%) using SiteReview. Therefore, a significant proportion of DNSTwist

generated typo-squatting domains are indeed malicious.

7.7.3 Relevance of seed domains

We find that the number of seed domains of cloaked squatting domains with a single

permutation (345, 0.3%) is considerably high compared to those with multiple permu-

tations. There were only 229 seed domains with 2-7 permutations of cloaked squatting

domains. The 7 seed domains in Figure 32 generated 8-13 permutations of squatting

domains. The categories of services offered by these seed domains include government

(service.gov.uk), gaming (epicgames.com), search engine (google.com.ph),

health (health.com) and news sites (cnbc.com). We also show the number of seed

domains of the generated cloaked squatting domains as a comparison in Table 30. With

both content and image dissimilarities, we find the proportion of squatting domains to seed

domains is higher with static content (1.89%-2.18%) compared to that of dynamic content

(1.08%-1.42%).

7.7.4 Detection of cloaked sites by blacklists

To study evasion of blacklists by cloaked squatting domains, we randomly selected 5000

squatting domains that are cloaked from domain list category A in Table 22, and ran them

daily through VirusTotal between May 2, 2019 – June 5, 2019. At the end of this period

(June 5, 2019), 92 (1.84%) were flagged by VirusTotal; phishing: 40, malicious: 41, mal-

ware: 22. Since our ground truth showed 80% of squatting domains were malicious (see

Section 7.5), it appears that most phishing/malware squatting domains are not blacklisted.
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Figure 32: Top 7 seed domains of the corresponding cloaked domains with 8-13 permutations.

With content dissimilarities With image dissimilarities
Type of do-
main

Nature
of con-
tent

Cloaked
sites

Redirects Target
URLs
flagged
by
Virus-
Total

Cloaked
sites

Redirects Target
URLs
flagged
by
Virus-
Total

Squatting static 2183 1763 27 1710 960 6
dynamic 83 42 0 784 490 3

Seed static 1153 1012 20 985 693 6
dynamic 77 38 0 552 382 3

Table 30: Projecting results of cloaked squatting domains to corresponding seed domains (i.e.,
squatting domain vs. seed)

After approximately 3 months from the time of this experiment (on Aug. 26, 2019), we

observed that URLs blacklisted by VirusTotal have not changed significantly (87, down

from 92). Further, on Sep. 4, 2019, we applied our methodology described in Section 7.3

to 2268 cloaked domains previously identified, and found 1038 (45.78%) of them were still

showing cloaked content. These cloaked domains may contain malicious content although

they were not flagged by blacklists. The remaining domains (1230) were either recycled or

showed exceptions described in Section 7.3.3. Therefore, it appears that the rate at which

these cloaked sites were detected by blacklists is extremely slow.
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With content dissimilarities With image dissimilarities
Device Content

type
Cloaked
sites

Redirects Target
URLs
flagged
by
Virus-
Total

Cloaked
sites

Redirects Target
URLs
flagged
by
Virus-
Total

Desktop static 607 498 7 484 289 3
dynamic 20 9 0 230 135 1

Mobile static 797 689 2 660 364 1
dynamic 44 30 0 206 174 0

Table 31: Variation in cloaking between device types

Typo-squatting domains hosting malicious content may get recycled more frequently.

This behavior may cause delays in blocking new websites or slow reactions to domain take-

downs that host malicious content [217]. We found 2256 out of 100,000 squatting domains

(cloaked and uncloaked) as malicious in Apr. 2019. However, 2048 of these domains re-

mained active as of Nov. 15, 2019, and out of those domains, 67 of them were no longer

flagged by VirusTotal. These websites showed benign content that is different from when

it was previously flagged by VirusTotal.

7.7.5 Variations of cloaking in different device types

A significant proportion of web traffic comes from mobile devices and mobile users are

more vulnerable to phishing attacks [202]. We identified cloaked websites using the heuris-

With content dissimilarities With image dissimilarities
Type Nature

of con-
tent

Cloaked
sites

Redirects Cloaked
sites

Redirects

Referrer static 9 5 4 3
dynamic 3 2 18 15

User-agent static 99 80 59 36
dynamic 4 1 46 31
Table 32: Variation between user-agent vs. referrer cloaking

tics defined in Section 7.3.3 for 25,000 sites (category B in Table 22) hosted on squatting
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domains from both desktop and mobile browsers (Chrome); see Table 31. Cloaked sites

with static content in mobile environment are more apparent compared to desktop envi-

ronment. Similarly, redirections of sites hosted on squatting domains to target URLs are

comparatively high in mobile environments. A significant number of cloaked sites overlap

between desktop and mobile browsers as identified by content (326) and image (119) dis-

similarity methods. The differences of the overlapping sites between desktop and mobile

environments were mostly related to its layout. Tian et al. [282] found more phishing pages

with mobile web browsers compared to desktop environment, and we observed a similar

pattern for cloaked sites. The number of target URLs of redirections blacklisted by Virus-

Total was low with mobile browsers compared to that of desktops. Oest et al. [202] observe

mobile browsers (including Chrome) failed to show blacklist warnings between mid-2017

and late-2018. Although they claim that following their disclosure the protection level is

comparable between mobile and desktop browsers, we noticed sites flagged by VirusTotal

for mobile browsers were less than that of desktops.

7.7.6 User-agent vs. referrer cloaking

We compare websites identified as cloaked between user-agent and referrer cloaking. For

both types of cloaking, we use the same sites in domain list category D in Table 22

that are hosted on typo-squatting/combo-squatting domains. As with our previous ex-

periments, user-agent cloaking is measured between GooglebotUA and ChromeUA. For

referrer cloaking, we use ChromeUA, but to mimic clicks initiated through search engine

results, we set the referrer header to http://www.google.com/. As shown in Ta-

ble 32, for sites with static content, cloaked sites identified from user-agent cloaking were

11x-16x higher than that of referrer cloaking (from both content and image dissimilarities

methods in Section 7.3.3).
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7.7.7 Relevance of type of squatting domains for cloaking

Most cloaked sites are hosted on combo-squatting domains as shown in Figure 33. This

may mean that combo-squatting domains are more effective in cloaking phishing and mal-

ware site content. Panagiotis et al. [164] find most combo-squatting domains are not reme-

diated for a long period of time (sometimes up to 1000 days). Therefore, many occurrences

of abuse happen before they are detected by blacklists.
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Figure 33: Cloaking by type of squatting domain.

7.7.8 Relevance of cloaking by other factors

The top 10 countries hosting the largest number of squatting domains with cloaked content

were United States (1508), Germany (145), Netherlands (53), Australia (53), Seychelles

(41), Canada (34), Switzerland (26), Japan (17), France (16) and British Virgin Islands

(15). Therefore, most of these cloaked sites were hosted in the United States and Germany.

Tian et al. [282] observed a similar pattern where most phishing sites are spread in these

countries. The top 5 registrars of squatting domains hosting cloaked content were GoDaddy

(477), Sea Wasp (225), Xinnet Technology Corporation (115), Tucows, Inc. (84), Enom,

Inc. (82). GoDaddy had registered the most number of cloaked domains.
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7.8 Recommendations

Majority of Internet traffic is originated from mobile users, and mobile browsers are prone

to phishing attacks [203]. However, anti-phishing protection in mobile browsers trail be-

hind that of desktop browsers. We observed cloaking of websites (with static content) that

are potentially malicious in mobile browser (Chrome) is comparatively higher to desktop

browser (Chrome). Bandwidth restrictions imposed by carriers in mobile devices is a bar-

rier to desktop-level blacklist protection [203]. Therefore, at least over a Wi-Fi connection,

the full blacklist should be checked by mobile browsers.

Since some major search engine crawlers are also owned by companies who develop

browsers (e.g., Google, Microsoft), these companies can complement their existing detec-

tion techniques by comparing the views of a web page between a browser and crawler

infrastructure, to tackle website cloaking. Some solutions in this aspect are already pro-

posed in past studies [156]. Another countermeasure is to have domain registrars add extra

checks in their fraud detection systems to detect domains that are permutations of popular

trademarks having a higher entropy. This will facilitate registrars to request more infor-

mation, if a domain registered is suspicious in carrying out malicious activities under the

disguise of cloaking. A similar practice can be be adopted by certificate authorities prior to

issuing certificates for suspicious domains.

7.9 Summary

Cloaked malicious sites deliver phishing, malware and social engineering content to vic-

timize users. We found 22% of cloaked domains show malicious content (technical sup-

port scams, lottery scams, malicious browser extensions, malicious links), with significant

differences between ChromeUA and GooglebotUA. In addition, we also found cloaking
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behaviors in a considerable number of squatting domains hosting dynamic content at irreg-

ular time intervals. This type of cloaking in dynamic sites is harder to detect, and may go

unnoticed by the detection algorithms. Some squatting domains redirect a website through

multiple intermediary domains to its final destination. [316]. We found 1.8% (1805 do-

mains in list category A in Table 22) cloaked squatting domains engaged in redirections

with content dissimilarities.

We found 716 cloaked domains included benign keywords (e.g., health, wellness, surgery)

in request headers, from the perspective of GooglebotUA, possibly to influence the rank-

ing of these sites. Also, empty iframes and error pages are observed from GooglebotUA,

when the view from ChromeUA for the same was maliicous. We also observed a larger

number of malicious links from ChromeUA, while benign links were viewed for the same

from GooglebotUA. In addition, a relatively larger number of cloaked sites with dynamic

content were identified with Image dissimilarities method.

We used DNSTwist to generate typo-squatting domains. The domain generation algo-

rithms used in DNSTwist are highly successful in generating malicious domains. Accord-

ing to SiteReview along with our heuristics, 74% of these typo-squatting domains were

malicious. Although, some of these malicious domains are short-lived, the attackers may

cause harm to users during the domain life time due to slow reaction to blocking such

domains.

In past studies, URLs used for crawling mostly include crafted websites or those be-

longing to specific malicious categories (phishing, social engineering ad campaigns). In

contrast, the squatting domains we used host potential malicious content mimicking a va-

riety of popular sites. The URLs of cloaked malicious websites we found may eventually

get flagged by various blacklisting entities (e.g., VirusTotal). We observed more squat-

ting domains and dynamically generated links identified from iframe elements are getting

flagged as phishing or malicious by VirusTotal over time. The cloaked sites blacklisted

160



by VirusTotal is a fraction (3.3%), which implies that a larger number of cloaked sites

go undetected. Our ground truth showed that nearly 80% of the cloaked sites were ma-

licious, which means nearly 77% of the malicious squatting domains were not detected

by VirusTotal. Therefore, the undetected portion of cloaked malicious sites is significant.

Our detection rate of cloaked malicious sites is significantly higher compared to past stud-

ies [202, 156]. Therefore, our heuristics can be used to compare the detection accuracy of

cloaking of malicious sites that mimic popular sites, with that of other studies.

Cloaking delays and slows down blacklisting [202]. We found 46% of cloaked squatting

domains with potential malicious content (from a sample of 2268 domains in list category A

in Table 22), continue to cloak content even after 3 months, reaffirming that the techniques

used by blacklisting entities are not effective for cloaked sites.
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Chapter 8

Longitudinal study of the TLS

ecosystems in networked devices

8.1 Introduction

Beyond user-level computing devices and back-end servers, there are many other Internet-

connected devices that serve important roles in everyday IT operations. Such devices in-

clude routers, modems, printers, cameras, SCADA (supervisory control and data acquisi-

tion) controllers, DVR (digital video recorders), HVAC (heating, ventilating and air con-

ditioning technology), CPS (cyber physical systems), and NAS (network-attached storage)

devices. Several past studies have identified critical security issues in these devices, includ-

ing authentication bypass, hard-coded passwords and keys, misconfiguration, serious flaws

in their firmware and web interfaces; example studies include: [236, 73, 72, 67, 68, 208].

The massive DDoS attack on DynDNS as attributed to the Mirai botnet (e.g., [22]), popu-

lated by DVRs, IP cameras and other IoT devices, shows the clear danger of security flaws

and weaknesses in these devices. Antonakakis et al. [22] argue that the absence of sound

security practices in the IoT space leads to a fragile state of its environment impacted by

vulnerabilities in devices. The Reaper [310] IoT botnet appears to be more severe than
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Mirai, as Reaper is capable of exploiting numerous device vulnerabilities, as opposed to

Mirai’s rather simple albeit effective exploitations of default credentials; see also [272].

Over the years, manufacturers of networked devices have implemented some security

mechanisms, notably, the adoption of SSL/TLS for communicating with other devices.

With the help of the ZMap [91] high-speed IPv4 scanner, some recent projects analyzed the

TLS ecosystem for web, email and SSH servers, and identified and measured significant

security issues in TLS deployments in the wild; see e.g., [90, 140, 89, 6].

Heninger et al. [138] highlighted faulty random number generators in networked de-

vices (see also the recent follow-up work [137]). Chung et al. [59] analyzed over 80

million invalid TLS certificates, and attribute most of them to network devices, includ-

ing modems/home routers, VPNs, NAS, firewalls, IP cameras and IPTVs. In Oct. 2016,

we studied the state of the TLS ecosystem for networked devices [240] and found many

devices using cryptographic primitives that are phased out from modern browsers and web

servers.

The types and number of devices available in Censys have increased since 2016, with

significantly more devices supporting TLS (73.7%) compared to 2016 (29.4%). However,

still some devices continue to support weak crypto primitives, while in few device types,

the use of such primitives has increased. In this work, we evaluate the progress of securing

the TLS ecosystem for devices by performing a similar measurement study in a more com-

prehensive form and compare the results with our previous study. We extracted certificates

of devices and Alexa sites, and process the raw data following the same methodology as

in our previous study. There are few new device types added to Censys since 2016. The

number of Alexa sites is now restricted to Top-1M in Censys.

We analyze certificates and TLS parameters of 6,319,951 devices (out of 8,570,047),

collected from Censys (http://www.censys.io) on May 6, 2018. Unsurprisingly,

many devices still continue to use cryptographic primitives that are currently being phased
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out from modern browsers and web servers. The state of the TLS ecosystem doesn’t appear

to have gained any significant progress. Specifically, we found a significant number of de-

vices using unsafe RSA 512-bit keys (3760 certificates) and 768-bit keys (8338 certificates),

slightly lower than our findings in Oct. 2016. The vulnerable/deprecated RC4 stream ci-

pher is still widely used in devices (302,038). A large number of devices (167,900) also use

(deprecated) SSLv3. No traces of SSLv2 are found in the snapshot taken in May 2018. We

also compare TLS security parameters between devices and Alexa Top-1M sites, which

clearly highlights the differences in these two domains. In all security aspects that we

consider (SSL/TLS version, signature, encryption and hashing algorithms, and RSA key

length), devices on average are more vulnerable than Alexa sites.

Similar to our previous study, we communicated our findings to top manufactures of

vulnerable devices. Interestingly, as in our previous study, Cisco appears to have the highest

number of vulnerable devices. Furthermore, the information of devices (e.g., model/serial

numbers) in Censys with weaker cipher suites is limited, inhibiting us from providing man-

ufacturers concrete identifying information of these devices. We refrained from carrying

out intrusive testing to find more specific information of these devices to avoid jeopardiz-

ing systems in production. Overall, we hope our results will serve as a catalyst to quick

fixing of TLS issues in devices, so that these devices do not remain less secure than the

HTTPS/web ecosystem in the long run.

Contributions.

• We carried out a measurement study to assess the vulnerabilities in devices based

on their TLS certificates and protocol parameters. Our current study is more com-

prehensive (cf. [240], conducted in Oct. 2016) as new device types and more data

relating to devices are added to Censys since 2016. Although the rate of adoption of

TLS is remarkable for devices between 2016 and 2018, the use of weak primitives

haven’t reduced significantly. Ironically, the use of weak primitives has increased in
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some devices and vice-versa with strong primitives.

• We find an increase of devices with ICS protocols (notably in S7 and Modbus) com-

pared to a study performed by Mirian et al. [193] in 2016. These protocols were

originally designed to operate within closed networks without explicit security mea-

sures. Although, Mirian et al. found a similar behavior as ours, we report the rate of

increase of devices supporting these protocols (except for DNP3) is higher than what

they observed in Mar. 2016.

• From our follow-ups with the leading manufacturers of vulnerable devices, appar-

ently, security patches from vendors remain unadopted by many device owners.

Beyond adopting secure updates in a timely manner, we also briefly discuss a few

counter-measures to improve the security of these devices.

The remainder of this chapter is organized as follows. We discuss related work pertain-

ing to TLS deployments in Section 8.2. We elaborate our methodology and the devices in

focus for our study in Section 8.3. In Section 8.4, we provide the details of our analysis

and results in terms of: the prevalence of weak security practices, and changes (between

2016 and 2018) in the use of weak and strong cryptographic primitives for devices; we also

compare the overall results of devices with Alexa-1M HTTPS websites. In Section 8.5, we

present our disclosure procedure and responses from manufacturers of devices with most

weaknesses. We list limitations of our experiments and future improvements in Section 8.6.

We suggest a few recommendations to improve the state of device security in Section 8.7,

and finally, conclude in Section 8.8.

8.2 Related work

We briefly discuss measurement studies on real-world TLS deployments.
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To allow researchers to analyze SSL certificates, the EFF SSL Observatory project [95]

offered the first large-scale, open certificate repository containing SSL certificates for the

IPv4 address space in 2010. Later, in 2013, Durumeric et al. [90] analyzed the ZMap col-

lected data of web applications (HTTPS) over a period of 14 months to uncover all public

certificate authorities (CAs) and the certificates they issued. Censys [88] is a search engine

used to query information relating to hosts and networks stored in daily ZMap scans. As

an example application for Censys, the prevalence of the unauthenticated Modbus proto-

col among SCADA systems has been studied. Numerous such systems have been found

across the globe. However, non-SCADA devices, specifically, the TLS ecosystem for those

devices have not been studied. We extend existing work to understand the TLS ecosystem

for networked devices, mostly used at home, enterprise, and industrial environments, and

physical/network infrastructures.

Heninger et al. [138] reported in 2012 that RSA/DSA algorithms as used specifically in

embedded network devices are vulnerable due to faulty random number generators. They

found that 0.75% of TLS certificates share keys, and RSA private keys can be easily calcu-

lated for 0.50% of TLS hosts (also reported similar results for RSA/DSA keys as used in the

SSH protocol). However, other TLS/certificate parameters were not analyzed in this study.

Pa et al. [208] propose the IoT honeypot (IoTPOT) to analyze malware attacks against

devices such as home routers, smart fridges, and other IoT devices. Their honeypot data

also shows significant increase in Telnet-based attacks, including DDoS, against IoT de-

vices. Costin et al. [67] devise a platform to find possible reuse of fingerprints of SSL

certificates, public/private keys of devices in ZMap datasets; many devices were found

with reused keys.

Industrial Control Systems (ICS) are becoming popular facilitating the remote and elec-

tronic control of physical equipment and censors. Although these devices with no in-built

security are originally designed to work in closed environments, in recent years they are
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connected to build smart grids. Mirian et al. [193], studied the Internet-connected vulnera-

ble devices, and found an increase of devices supporting BACnet, DNP3, Modbus, Fox and

S7.

Shodan.io is a search engine similar to Censys, targeted towards IoT devices (full ac-

cess requires paid subscriptions). In addition to IPv4 devices, Shodan claimed to have

scanned millions of IPv6 addresses, reportedly by exploiting a loophole in the NTP Pool

Project [24]. Arnaert et al. [23] highlight challenges in aggregating search results from

Shodan and Censys, and propose an ontology to make them more usable and effective for

finding vulnerable IoT devices.

There have several large-scale measurement studies of vulnerable IoT/CPS devices in

the recent years, including potentially malicious scanning activities. Galluscio et al. [117]

used an algorithm with data from the darknet to infer compromised unsolicited IoT devices.

They found 11,000 such devices, most of which are embedded into active CPS infrastruc-

tures, and can be recruited into botnets. Leveraging a network telescope (consisting of

unused, new IP ranges), Fachkha et al. [103] studied the probing of CPS devices support-

ing 20 common CPS protocols. They analyzed and correlated 50GB darknet data for this

purpose (from one-month period), and extracted the probing events after an inferring pro-

cess. They found more than 9000 such orchestrated events, attributed to unsolicited and

malicious campaigns. After cross-matching these events with threat repositories, the au-

thors found Modbus, ICCP, Niagara Fox and DNP3 are the top abused TCP CPS. Torabi et

al. [286] performed a similar analysis to infer compromised IoT devices by finding those

devices from the Shodan service, and identifying which of them are malicious using a threat

repository/malware database. Xu et al. [314] carried out a comprehensive study of vulnera-

bilities in IP cameras available at http://www.insecam.org. In addition to cameras

without password protection, the authors found open ports, network traffic rate, live video

feeds streamed without owner’s knowledge, and outdated/vulnerable software programs.
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Note that, unlike these studies, we focus on the weaknesses specific to TLS deployment of

networked devices.

Benson et al. [32] argue the fragility of the device ecosystem is attributed to unpatch-

able/insecure devices, insecure default passwords/misconfigurations, and the lack of suit-

able user interface, regulation, and cooperation between IoT manufacturers, network providers,

content providers and end-users. The authors propose a Security Monitor to observe the

aggregate view of network activity, as the low volume of attack traffic from an individual

device is most likely undetectable. In addition, they propose a Security Manager to police

the behavior of IoT devices at levels of different granularity (e.g., IP and service levels).

To improve the manual annotation process in Censys (the ZTag device tagging module),

Feng et al. [107] develop an Acquisitional Rule-based Engine (ARE) capable of discover-

ing and annotating devices automatically. ARE relies on application-layer responses from

devices that run an Internet-accessible server, in conjunction with product information col-

lected through web search. However, ARE will miss devices behind a NAT or the ones

that cannot be queried from outside (e.g., no web server). Mi et al. [191] scan residential

networks behind NAT to discover IP proxy machines including home IoT devices; access

to residential machines is purchased from residential proxy providers such as Luminati1

and Geosurf.2 This approach is however ethically questionable at best (no consent from

the device owners). Also, some proxy providers, such as Luminati disallows scanning the

local network.

8.3 Methodology and device info

We rely on the Censys [88] search engine for our analysis. In this section, we provide a

brief overview of Censys, and detail our methodology.

1https://luminati.io
2https://www.geosurf.com
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Censys3 enables querying data from the Internet-wide scan repository, a data repository

hosting the periodic scan results as collected by the ZMap scanner [91]. Censys tags the

collected data with security-related properties and device types, allowing easy but powerful

search queries through its online search interface and REST API. Censys also tags TLS

and certificate data of Alexa Top-1M web sites. Tagging is done by annotating the raw

scan data with additional metadata, e.g., type and manufacturer for devices, and Alexa

ranking for sites. The output from the application scanners is used to identify device-

specific metadata. The annotation process involves ZTag (paired with ZMap and ZGrab),

allowing researchers to add logic to define metadata for currently untagged devices [88].

Although Censys is now commercialized and a matured product, search capabilities in

Censys are still improving (not all device metadata is defined in ZTag, although ZTag can

be extended). Thus, TLS/certificate data and tag information for all device types are still

not comprehensively reflected in Censys.

Table 33 lists available device types extracted from Censys, divided by their TLS sup-

port, for our datasets collected in Oct. 2016 and May 2018. Results discussed here refer to

our May 2018 dataset, unless otherwise specified. We further group some device types from

Censys for easier presentation as follows: modem (cable/DSL), printer (all printer models,

print servers), network (generic network devices, network analyzers), SCADA (scada con-

troller, router, gateway, server, frontend), media (set-top box, digital video recorders, VoIP,

cinema), CPS (PLC, HVAC, IPMI, alarm system, environment monitor, fire alarm, indus-

trial control system, water flow controller, light controller, power distribution unit, power

monitor, power controller, solar panel). Certain device types (e.g., USB) appear to be small

in numbers (9). This may be due to the fact that the tagging process in Censys is not very

comprehensive. We do not consider devices that are very low in number or does not fall

into our device categorizations (e.g., KVM, TV tuner, USB devices). The devices appear

3http://www.scans.io
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to come from all around the world (78 countries with >1000 devices); the top 10 countries

host about 84% of all devices compared to 56% reported in our 2016 study. Top-3 coun-

tries hosting these devices in 2018 are USA 43.5%, Mexico 15.8%, Spain 6.3% (in 2016:

Germany 17.9%, USA 15.0%, India 4.9%).

Device type
Oct. 2016 May 2018

Non-TLS
Count

Non-TLS
%

TLS
Count

TLS
%

Non-TLS
Count

Non-TLS
%

TLS
Count

TLS
%

Infra.
router

237,540 66.8 118,259 33.2 381,379 69.1 170,320 30.9

Modem 158,558 86 25,724 14 108,021 2.1 4,959,267 97.9
Camera 143,721 95.5 6809 4.5 116,691 92.2 9932 7.8
NAS 71,997 56.5 55,503 43.5 186,222 33.6 368,480 66.4
Home/office
router

51,347 66.7 25,667 33.3 211,851 43.9 270,195 56.1

Network 3 0 39,857 100 1,053,091 79.9 265,715 20.1
Printer 10,148 31.3 22,296 68.7 153,147 76.7 46,463 23.3
Scada 24,909 86.8 3773 13.2 23,509 85.9 3860 14.1
CPS 12,820 93.7 868 6.3 11,423 12.3 81,572 87.7
Media 8000 87.9 1102 12.1 3647 2.5 142,293 97.5
Total 719,043 70.6 299,858 29.4 2,248,981 26.3 6,318,097 73.7

Table 33: Type-wise device distribution

For comparison, we chose the Alexa Top-1M sites. Data extracted from Censys is

transformed to an intermediary format that requires a resource-intensive post-processing

phase. Search queries can be executed on Censys in two ways: a RESTful web API or

an SQL interface engine.4 We used the latter option, as it is more efficient for large-scale

search results. After the TLS parameters and certificates are extracted for devices and

Alexa-1M sites, we first analyze our selected security parameters and algorithms in devices.

We then compare the security parameters from devices with those from Alexa-1M sites, to

highlight any important differences between them. Similar to past work (e.g., [90, 172]), we

choose the following certificate/TLS parameters: cipher suite (algorithms used for hashing,

key encryption, key exchange and authentication, signature), SSL/TLS protocol version,

4Accessed via Google BigQuery interface: https://bigquery.cloud.google.com
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and RSA key length.

8.4 Analysis and results

On May 6, 2018, we used Censys [88] to extract certificates and TLS parameters from

6,319,951 TLS-supporting devices (out of a total of 8,570,047 devices), and from 735,638

HTTPS sites in Alexa Top-1M. The number of total devices in Censys supporting TLS have

increased by 21 fold since our last measurement study. Furthermore, new types of devices

have been added to Censys, including: network (switch) and CPS (alarm system, environ-

ment monitor, fire alarm, IPMI, power controller, solar panel). We also noticed a new type

of router: SOHO (Small Office / Home Office) appearing in the latest Censys snapshot,

which we categorize as home/office router. Only home routers were found in our previous

dataset. Home routers are normally used for personal use where users prefer accessing the

Internet with wifi connections for ease of accessibility. In contrast SOHO routers are in-

tended to support enterprise systems, mostly through wired Ethernet. The count of devices

supporting TLS has increased significantly in May 2018 (6,318,097, 73.7%) compared to

Oct. 2016 (299,858, 29.4%); the increase of modems is also extraordinary (i.e., from 25,724

to 4,959,267). In contrast, the percentages of some devices (infrastructure router, printer,

network) supporting TLS have decreased from that in May 2016. This may be attributed to

the variation of the proportion in which devices of different types are added to Censys. In

this section, we provide the results of our analysis and compare the use of TLS/certificate

parameters.

8.4.1 Prevalence of weak security practices

For each cryptographic primitive in a device certificate and TLS/SSL protocol banner,

we compute the percentage to compare the parameters between devices; see Figures 34–38
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for a comparison of the weak cryptographic primitives (for exact data, see Table 34). We

also compare average values from devices with Alexa sites (the last two bars). For brevity,

we first highlight results for algorithms and parameters that are most vulnerable. We also

analyze certificate reuse in both devices and Alexa sites.

Hash functions in message authentication. Some devices still use MD5 although in small

fractions. The use of MD5 in home/office routers (60,835, 22.5%) and CPS (14,665, 18%)

devices are significant. In Alexa-1M sites, the MD5 usage is negligible as a percentage

(1834, 0.2%) compared to our findings in 2016 (6588, 1.1%). Media (141,905, 99.7% )

devices and infrastructure routers (152,601, 89.6%) mostly use SHA1; see Figure 34. MD5

is broken for more than a decade now [302]. SHA1 collision attacks are now feasible [264]

(see also [265]; being phased out as of writing).

Hash functions in signature schemes. The MD5-RSA signature scheme is mostly used

in printers (16,749, 36.1%), while SHA1-RSA is predominant in media (141,882, 99.7%),

network (185,607, 69.9%) devices, infrastructure routers (152,601, 29.7%) and modems

(3,699,856, 74.6%); see Figure 35. Devices using MD5-RSA are vulnerable to certifi-

cate collision attacks, where attackers create certificates that collide with arbitrary pre-

fixes/suffixes [266]. Out of all the modems, the usage of SHA1-RSA is the highest in

wireless modems (27,747, 75.2%). Some devices (164,847) use “unknown” algorithms;

according to a Censys author (email correspondence), these algorithms are not parseable.

RSA key lengths. The use of factorable 512-bit RSA keys is a serious security issue,

enabling efficient FREAK attacks (e.g., via [293]). These keys are mostly observed in in-

frastructure routers (3111, 1.9%), cameras (434, 4.4%) and Scada (22, 0.6%) devices. We

also noticed 512-bit RSA keys in an industrial control system and two solar panels. The

industrial control system with the factorable key appears to be located in Spain, and manu-

factured by Opto22 [207]. Certificates with 1024-bit RSA keys are deemed to be insecure

as of early 2016; see NIST SP 800-131A (at least 2048 bits should be used). However,
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many devices still use 1024-bit keys (Figure 36); the use of 1024-bit keys is high in in-

frastructure routers (124,918, 78%) and media (141,771, 99.6%) devices. A few Alexa-1M

sites (12,974, 2%) still use 1024-bit RSA keys in certificates.

Encryption algorithms. We check the use of vulnerable ciphers such as RC4 (see e.g., [118],

RFC 7465), and 3DES (the Sweet32 attack [33]). Note that the ZGrab application scanner

as used with ZMap includes RC4 as a supported cipher (in addition to ciphers included in

the Chrome browser), to allow communication with older TLS servers. RC4 is mostly used

in infrastructure routers (108,834, 63.9%), while its use is minimum in media (85, 0.1%)

devices; see Figure 37. Alexa-1M sites still use RC4 at a smaller scale (4828, 0.66%). The

use of 3DES cipher is limited except in CPS (4734, 5.8%) and network (10,392, 3.9%) de-

vices. 3DES is more prevalent in firewalls (8412, 25.8%). The use of ChaCha20-Poly1305

(currently being standardized, RFC 7905) as a replacement of RC4 is still negligible in

devices as an average (550, 0.09%) compared to Alexa-1M sites (15,225, 2.07%).

TLS/SSL version. SSLv3 usage (vulnerable to the POODLE attack [197]) is consider-

able in home/office routers (76,338, 28.3%) and CPS (13,928, 17.1%) devices. TLS 1.0 is

vulnerable to the BEAST attack [87]. Media (141,861, 99.7%) and infrastructure routers

(170,311, 79.7%) have a high use of TLS 1.0. However, in Alexa-1M sites (31, 4%), TLS

1.0 use is low. In our study in Oct. 2016, we found devices supporting SSLv2 (deprecated

in 2011, see RFC 6176). Version rollback attacks downgrade SSLv3 to SSLv2 [10]. With

the DROWN attack [27], an attacker can even break a strong RSA key, if the server shares

the RSA key with an SSLv2 server. Most of these devices were of type NAS (5517) and

network (2006). However, none of the current snapshots in ZMap or Censys appear to have

devices using SSLv2.

Certificate issuers. Most device certificates are self-signed (68% and 71% in Oct. 2016

and May 2018, respectively), potentially making them vulnerable to man-in-the-middle

(MITM) attacks. The remaining certificates are CA-signed; see Table 35 (total CAs: 1335
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and 4923 in Oct. 2016 and May 2018, respectively). Some CA organizations are device

manufacturers, others are browser trusted. Certificate data in Censys contains a flag indi-

cating the browser trusted status (based on Mozilla NSS). According to the Top-10 issuer

organizations data taken from 2016 and 2018 snapshots, a major change is the adoption of

free certificates from Let’s Encrypt (21,006; no certificates from traditional CAs in top 10).

We could not find more details of the “Bitbug.net Network Services” certificate issuing

organization. The Issuer DN field of certificates issued by “hw” contains email addresses

from Huawei (e.g., HW@huawei.com). When contacted, Huawei confirmed the issuance

of those certificates. Although “trendchip”5 was acquired by another company in 2010,

certificates issued are still in use under its former name. Certificates of both trendchip and

Bitbug.net are expired.

Oct. 2016 May 2018
Issuer org. Count % Trusted? Issuer org. Count % Trusted?
Western Digital 6846 0.67 × Synology Inc. 143,336 2.27 ×
Synology Inc. 6461 0.63 × hw 138,154 2.19 ×
ZyXEL 4220 0.41 × Huawei 125,009 1.98 ×
GoDaddy.com 1412 0.14 1213 trendchip 37,161 0.59 ×
hw 1101 0.11 × ZTE Corporation 30,841 0.49 ×
TELMEX 1038 0.10 × Let’s Encrypt 22,815 0.36 21,006
TAIWAN-CA 818 0.08 818 LANCOM Systems 15,041 0.24 ×
COMODO 811 0.08 630 Bitbug.net Network Services 11,376 0.18 ×
StartCom Ltd. 628 0.06 399 SANGFOR 9986 0.16 ×
GeoTrust Inc. 622 0.06 538 Cisco Systems 9543 0.15 ×

Table 35: Top-10 organizations issuing device certificates (the “Trusted?” column represents
browser trustworthiness)

Certificate reuse. Some devices often come with the same default certificate, which re-

mains unchanged afterwards. We group certificates according to their SHA256 fingerprints

for reuse detection.6 Many devices reuse certificates, out of which DSL and cable modems

are the highest (4,763,389, 75.4%). These devices may be vulnerable to MITM attacks (cf.

SSH attacks [53]). Certificates reuse in Alexa sites has reduced slightly (33% of certifi-

cates are reused in May 2018 vs. 38% in Oct. 2016, mostly due to CDN, similar to past
5https://www.bloomberg.com/research/stocks/private/snapshot.asp?

privcapId=28942714
6Certificates with the same public key may differ in other fields, resulting in different fingerprints. We did

not analyze public key reuse in certificates; the dataset we use from ZMap/Censys does not contain actual
public key values.
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Figure 39: Unique certificates: Alexa-1M (total certs: 735,638) vs. devices (6,319,951) as of May
2018

studies, e.g., [299]); see Figure 39. Certificate reused by groups of 5+ Alexa sites/devices

are relatively low.

The Common Name (CN) in most reused certificates contain non-routable IP addresses,

e.g., 192.168.1.1 (274,824, 4.35%), generic identification labels, e.g., zxserver (138,135),

BMS (1,345,520), or domain names, e.g., *.alarmesomfy.net (14,004).

DH prime number reuse. Many devices supporting Diffie-Hellman (DH) Key Exchange

reuse prime numbers. Such reuse can be exploited via the Logjam attack, enabling a

MITM attacker to downgrade connections to export grade Diffie-Hellman [6]. Alias et

al. [15] reported that a timing side-channel attack is possible with DHKE used in an em-

bedded system which can decrease the key search area, reducing the time to solve the Dis-

crete Log Hard Problem (DLHP). Such an attack can lead to the extraction of private keys

from devices. There are (308,139, 4.87%) reused primes in devices, including infrastruc-

ture routers (27,187, 0.43%), NAS (5479, 0.54%), modems (97,753, 1.55%), and network

(63,443, 1%). In Censys, there are 735,638 Alexa domains supporting TLS, out of which

only 3.6% (26,310) support DHKE reused prime numbers. In Oct. 2016, 0.2% of all Alexa

sites reused DH prime numbers, while with Alexa-1M sites, the same reused percentage is
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9.9% (50,292). Therefore, it appears that DHKE prime number reuse is significantly high

in Alexa-1M sites compared to all of the Alexa sites.

8.4.2 Changes in the use of weak cryptographic primitives

New devices added to Censys consist of cryptographic primitives at varying proportions.

These cryptographic primitives exhibit positive and negative fluctuations at the level of our

device groupings, or when taken as an average. Table 36 shows changes in percentages

of weak primitives. A negative value represents a reduction of the primitive compared to

our previous study and vice-versa. Alexa-1M sites supporting HTTPS have increased in

Censys (from 598,888 to 735,638) since 2016. The numbers for device average of SHA1

hashing algorithm (0.9%), SHA1-RSA signature algorithm (7.6%), RSA key lengths of

1024-bit (16.2%), TLS 1.0 (5.1%) and TLS 1.1 (1.8%) have increased.

It is important to note that even when the average of a device category for a weak

primitive is reduced, it is still possible to observe an increase of the same primitive for a

specific device in the same grouping. For example, the use of MD5 on average has reduced

(-2.6%), but its use in home/office router (22.3%) and CPS (17.7%) devices has increased

significantly. SHA1 use has increased in modems (38.8%) and media (33.5%) devices,

while a sharp drop is noticed in home/office routers (-32.5%) and printers (-34.8%). MD5-

RSA use has dropped in infrastructure routers (-54.7%) and printers (-38.8%). The 1024-bit

RSA keys increased in modem (59.3%), CPS (60.5%) and media (48.2%) devices. SSLv3

usage has dropped in infrastructure routers (-52.4%). No change is observed for Alexa-1M

sites (SSLv3 is not used).

Mirian et al. [193] found devices with ICS (Industrial Control Systems) protocols show

vulnerabilities in equipments installed in plants. The number of vulnerable devices for

specific ICS protocols (in Mar. 2016) and the percentage increase between Dec. 2015 –

Mar. 2016 is shown in columns 2 and 4 of Table 37. All devices supporting ICS protocols
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are tagged in Censys with the specific protocol name (e.g., BACnet, DNP3, Modbus, Fox,

S7), and we use these tags to differentiate when counting devices supporting each protocol.

We extracted the number of devices supporting the specific protocols from the May 2018

snapshot in Censys and calculated the percentage change from Oct. 2016. The number

of devices using S7 (41.6%) and Modbus (24.9%) protocols have increased significantly.

However, devices using DNP3 (1.2%) haven’t increased much.

Protocol Number of
devices (Mar.

2016 [193])

Number of
devices (May

2018)

Increase from
Dec’15 to

Mar’16 [193]

Increase from
Mar’16 to

May’18
BACnet 16,813 17,178 0.4% 2.1%
DNP3 429 434 2.3% 1.2%
Modbus 23,120 30,771 7.1% 24.9%
Fox 26,535 28,261 0.9% 6.1%
S7 2798 4791 18.7% 41.6%

Table 37: Changes in vulnerability – an increase in devices supporting vulnerable ICS protocols is
apparent with time (specifically for Modbus and S7)

Reusable private keys. It appears that a substantial number of manufacturers include

shared private keys into firmware of devices being sold [281]. These keys are mostly used

to provide SSH and HTTPS access to devices. It is possible to extract these private keys

after buying such devices or from a downloadable firmware. Censys tags these reused pri-

vate keys, but it is not an exhaustive source to find all devices that are impacted. This is

also because not all devices are persistently connected to the Internet. Viehböck et al. [296]

published a list of fingerprints of devices with known private keys. Censys identifies these

devices with private keys using a non-intrusive approach leveraging the fingerprints of cer-

tificates from its Internet-wide scans [249]. If a reused private key is exposed, a large

number of devices may become vulnerable to impersonation, man-in-the-middle and pas-

sive decryption attacks [249]. Top-10 countries with devices including known private keys

are shown in Table 38. Thailand (14.14%), United States (13.09%) and Brazil (10.06%)
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are the top 3 countries that include known private keys in devices. According to a pre-

vious study [249] carried out in 2015, top 3 countries having devices with known private

keys are United States (26.27%), Mexico(16.52%) and Brazil (8.10%). While the situation

have improved in some countries, in some countries devices with known private keys have

increased, e.g., United Kingdom (3.62%), Brazil (1.96%), Colombia (0.04%).

Country Count Percentage
Thailand 193,805 14.14%
United States 179,435 13.09%
Brazil 137,803 10.06%
Dominican Republic 132,787 9.69%
Mexico 86,825 6.34%
United Kingdom 80,610 5.88%
Colombia 60,291 4.4%
Spain 59,068 4.31%
Canada 35,254 2.57%
Tunisia 24,298 1.77%

Table 38: Top-10 countries with known private keys included in devices

We summarize the numbers and percentages of devices with reusable keys in Table 39.

Modems, home/office routers, network and NAS devices appear to reuse a considerable

number of these private keys. According to Table 40, Huawei, DrayTek and Multitech

are manufacturing most of these devices. To mitigate this risk, vendors should consider

assigning a random private key to each of the devices manufactured. On the other hand,

users should change the default passwords and certificates (self-signed) pertaining to de-

vices whenever possible as appropriate. However, this is not always a pragmatic approach

due to lack of permissions, controls and knowledge to adopt such security measures by

clients.

8.4.3 Changes in the use of strong cryptographic primitives

The use of strong cryptographic primitives appears to have reduced for certain devices

between Oct. 2016 – May 2018; see Table 41. The SHA256 usage in modems (-38.4%),
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Device grouping Count Percentage
Modem 535,530 6.2%
Home/office router 160,892 1.9%
Network 61,375 0.7%
NAS 45,632 0.5%
Camera 253 -
Infra. router 183 -
Media 121 -
Scada 90 -
Printer 85 -
CPS 11 -

Table 39: Devices groupings with a known private key as tagged in Censys

Manufacturer Count Percentage
Huawei 503,364 5.9%
DrayTek 151,049 1.8%
Multitech 73,173 0.9%
Ubiquiti Networks 30,030 0.4%
Telrad 27,747 0.3%
Seagate 27,617 0.3%
NetGear 10,809 0.1%
Linksys 9541 0.1%
Adtran 7379 0.1%
Allegro Software 6964 0.1%

Table 40: Top-10 manufactures of devices with a known private key as tagged in Censys.

CPS (-18.6%) and media (-17.7%) devices has dropped significantly. The use of SHA256-

RSA and SHA512-RSA has significantly reduced in media (-29.7%) and Scada (-8.9%)

devices, respectively. Although, the device average of SHA512-RSA has decreased slightly

(-0.5%), no change is observed in Alexa-1M sites. Even though, the SHA256-ECDSA use

in device grouping under consideration or device average has not reduced, the use of same

signature algorithm has reduced slightly in Alexa-1M sites (-0.4%). The device average

for 2048-bit (-13.3%) and 4096-bit (-0.3%) RSA keys has reduced, but the corresponding

change in Alexa-1M is an increase (12%, 3.1%). The device average for AES-128-CBC (-

2.8%) has reduced, but the stronger AES-256-CBC (17.55%) and AES-128-GCM (1.21%)
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primitive use have increased. In contrast, in Alexa-1M sites, only the use of AES-128-

CBC (-1.8%) and AES-256-CBC (-9.39%) have reduced. The device average of TLS 1.2

protocol is slightly reduced (-2.8%) as opposed to the considerable increase of the same in

Alexa-1M sites (11.6%). Also ,TLS 1.2 use in modems (-35.1%) has reduced while it is

the opposite for cameras (35.2%).

Overall, apart from encryption algorithms, there is an increase in weak TLS primitives

with the growth of devices supporting TLS. It is likely that the legacy devices accumulated

over time may not get proper attention to have their firmware upgraded to latest versions to

eliminate possible vulnerabilities (due to e.g., lack of oversight [290]).

8.5 Disclosure

The vulnerable devices we found in our study are manufactured by hundreds of dif-

ferent companies. The Top-5 manufactures of vulnerable devices are show in Table 42.

We have contacted the ones with many vulnerable devices, where we could locate con-

tact email addresses of vulnerability management support teams of these manufacturing

companies from the web, explaining our findings. We have got responses from Cisco,

DrayTek, Synology, Huawei and Ubiquiti Networks. According to Cisco, they allow users

to import certificates of their choice, who may be using certificates with weak ciphers

due to lack of awareness. As is in our previous study, Cisco appears to be the top manu-

facturer with vulnerable devices. Interestingly, the devices manufactured by Somfy Sys-

tems have the same number (13,897) of ciphersuites with vulnerable MD5, RC4, SSLv3

and RSA1024 cryptographic primitives. All these devices appear to be using the same

TLS_RSA_WITH_RC4_128_MD5 cipher suite for negotiation during the SSL/TLS hand-

shake.

As we found, Vigor routers produced by DrayTek are vulnerable. DreyTek informed

us that the vulnerable devices are of older units where the owners haven’t updated their
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firmware. Some of these devices support the weak SSLv3 protocol. According to DrayTek:

“SSLv3 is, of course, deprecated and users should use TLS1.2 which is supported by all

of our current and most recent products”. Unfortunately, companies of larger scale will

take more time to improve security of devices with their prevailing change management

practices, where the focus on stability takes precedence over security. They claim most of

their users update the units, but it is challenging to acquire 100% success due to lack of ad-

herence by users in turning off older protocols. In May 2018, more than 800,000 DrayTek

routers were found to be exploitable by a DNS reprogramming attack [273], which can

eventually hijack web traffic to reveal personal information.

Huawei claims that they deny access to WAN ports by default, but some users appear

to have customized their devices by opening the WAN ports, allowing possible external

attacks. They plan to communicate with their customers and have the SSH/HTTPS ports of

WAN devices closed, to reduce the risk of devices with known private keys. Dell claims that

the reported devices appear to run very old firmware, not properly configured or already

out of support. With the latest firmware, they only use TLSv1.0, TLSv1.1 or TLSv1.2

protocols, SHA256 hashing algorithm, longer key lengths (2048 bits), and no RC4 ciphers.

Synology informed us that users may be using outdated settings to host the services pro-

vided by their product(s). They were very appreciative of our efforts and plans to publish

techniques in enhancing the security of their Data Security Manager (DSM) with different

settings to address the problem. Ubiquiti Networks informs us that their airMAX devices

used static SSL/TLS certificates until the end of 2015, at which point they fixed the prob-

lem by generating a self-signed certificate on the first boot. It appears that users are still
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Manufacturer MD5 RC4 SSLv3 <RSA1024 Device types
Cisco 1340 126,125 50,268 176,478 Infrastructure router,

camera, switch, network,
SOHO router, firewall,
SCADA controller

DrayTek 60,775 60,877 7293 70,801 SOHO router, camera, in-
fra. router

Synology 242 445 211 81,035 DVR, camera, SOHO
router, NAS

Somfy Systems 13,897 13,897 13,897 13,897 Alarm system
Dell 760 2541 22 28,592 IPMI, laser printer

Table 42: Top-5 manufactures with vulnerable devices (in May 2018)

using Ubiquiti devices with old firmware.

8.6 Limitations

Certain statistics as extracted from Censys appear to be unusual. For example, there is only

one infrastructure router from certain manufacturers, e.g., Apple, DrayTek and Huawei. We

communicated such observations to a Censys author, who attributed them to be possible

limitations of the current Censys logic, or device misconfiguration. Data in Censys can

be queried using the Google BigQuery SQL interface. This interface allows querying data

using standard SQL and facilitates downloading results in CSV and JSON formats that are

easy to parse and machine process. However, Google BigQuery is not free after one year

of use.

According to a Censys author, it is possible that some devices provide conflicting in-

formation on different ports, likely due to port forwarding from specific devices to device

types that are tagged incorrectly. This appears to be a known issue due to fingerprinting de-

vices at protocol-level rather than at host-level. Censys plans to work on a more advanced

fingerprinting technique to address this problem in the future.

Although Censys allows users to search and analyze all types of connected devices via

Google BigQuery, Censys do not have information of devices that cannot be reached via
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ZMap (e.g., private/non-routable/firewalled addresses, opt-out from ZMap scanning). Fur-

thermore, ZMap do not scan devices in their blacklist [320] or those network prefixes that

fall outside in its whitelist. Therefore, to evaluate the completeness of results, correlation

with alternative sources may be considered [254, 107]. Newer IoT devices are increasingly

adopting IPv6 [76], which also cannot be measured by the IPv4-based ZMap scanner.

Censys requires manual effort in defining annotation rules to tag device meta-data (e.g.,

type, manufacturer), which is not ideal in discovering new devices at large scale. Therefore,

more collective effort is also needed to improve device tagging/annotating in Censys [88].

We found thousands of vulnerable devices from many manufacturers, and contacted

the top-10 of those with most vulnerable devices via email (using appropriate addresses as

found in their websites). This is a manual process and is not scalable. Stock et al. [267]

explore several forms of scalable/automated communication channels (e.g., email, domain

WHOIS information, phone, social media) for more effective vulnerability notification.

8.7 Recommendations

Based on our analysis, we suggest a few possible way-out from the current status quo in

device security. Note that these recommendations are preliminary, listed here to stimulate

future work in solving TLS security issues in non-computer devices.

1. The obvious one would to enable automatic security updates to devices, instead of

relying on pro-active user actions. However, for certain devices (especially the ones

possibly maintained by professional administrators), care must be taken to avoid un-

planned downtimes of production systems. For this purpose, vendors should perform

thorough testing before releasing patches to its users [26]. In Mar. 2008, a nuclear

plant was accidentally rebooted following a software upgrade [49, 96] causing an

unnecessary alarm of a drop of cooling. We strongly suggest that updating should
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be used as the last resort for fixing a security issue; it is far better to avoid possible

security issues in the design than fixing them on-the-go. Also, updates will almost

never reach to 100% of all devices. Better understanding the consequences of attacks

and designing new attack detection/resilient algorithms to prevent them at the incep-

tion is vital [49, 96]. As CPS employ autonomous and real time decision making

algorithms, the authors suggest to have automatic recovery built-in during the design

phase.

2. As many devices may not be reachable, or not readily update-able due to operational

constraints, unlike desktop/mobile/server computers, we recommend to adopt strong

security measures from the beginning, including, the use of latest TLS versions, most

secure cipher-suites (given the computational capabilities of a device). We argue

against gradual/step-wise increase of security levels (e.g., from RSA-512 to RSA-

1024) for devices, as they are difficult to update and may remain operational for

years. ICS devices originally developed to operate on isolated environments decades

ago, still continue to operate, which are now connected to the public Internet allowing

more exposure to possible vulnerabilities [193].

3. Avoid all known pitfalls in TLS security [262, 149], e.g., the use of fixed private

keys, vulnerable or soon-to-be obsolete ciphers (e.g., RC4 and RSA-1024) [152],

and self-signed certificates (can be easily avoided by using free certificates from Let’s

Encrypt).

4. Although manufacturers may block access to remote management interfaces of de-

vices over SSH/HTTPS, users may still customize to allow remote access to devices.

Therefore, it is also prudent for ISPs to ensure remote access to customer-provided

equipment (CPE) is disallowed [249].

5. Allowing insecure device settings (e.g., fixed private key), or protocols (as in many
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ICS devices) with the assumption that these devices would remain only in isolated

networks must be avoided. Traditionally isolated devices are often being connected

to the Internet, e.g., for remote management. Failure to address the vulnerabili-

ties of interconnected devices in smart grids will hinder modernization of such sys-

tems [175].

6. Consider system hardening to tighten system security by shutting down unnecessary

applications and ports [69].

8.8 Summary

As apparent from several studies on the real-world deployment of web servers (e.g., [172,

90]), TLS can provide tangible security benefit, only when it is configured properly. Partly

due to several recent high-profile measurement studies (e.g., [89, 6]), TLS security for

user-facing servers is improving. However, we found many networked devices are still

using weaker/broken crypto primitives in TLS, compared to Alexa sites. Based on our

measurement studies carried out in Oct. 2016 and May 2018, although the number of de-

vices supporting TLS has sharply increased, still a large number of devices supporting

weaker cryptographic primitives remain vulnerable. Some manufacturers (e.g., Lenovo,

Seagate) appear to have produced a larger number devices with RC4, MD5, SSLv3 and

key lengths of 1024-bit (RSA) and below. We also found a considerable number of known

private keys in devices, which make them vulnerable. This is more apparent in modems

(6.2%) and home/office routers (1.9%). Upon reaching out to them, we were told that

the primary reason for the status quo is the inaction of users in applying latest firmware

upgrades. However, the reality is such that no action is taken by most manufacturers to

mitigate the vulnerabilities of devices where their users are not proactive in applying secu-

rity patches. Blaming users who haven’t updated their devices with security patches, which
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may sometimes happen due to lack of knowledge, will not solve the issue.

Note that some vulnerabilities may have no effect if the services are accessed within a

local network (e.g., inside a private home network), or via a modern browser—e.g., no cur-

rent browser would accept the RC4 cipher or SSLv2, even if offered by a server. As these

devices are varied (unlike regular web servers), actual exploitation of their weaknesses will

depend on how they are used/accessed. These seemingly obsolete attack vectors can also

be revived in the presence of a vulnerable TLS proxy between a modern browser and the

vulnerable server, such as an anti-virus proxy [77].

We hope our findings to raise awareness of this issue and positively influence the man-

ufactures to push appropriate firmware upgrades (possibly with auto-updates).
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Chapter 9

Conclusion and future work

Since the creation of the web, it had since evolved, and transitioned from static content, to

serve more richer and dynamic content. To enhance the user experience and the commer-

cialization of the web (e.g., to use the web as an e-commerce platform), new technologies

(e.g., cookies) were introduced, that opened opportunities for advanced tracking mecha-

nisms. Web tracking is rooted to the commercialization of the web, that has evolved with

time. Although, it is argued that tracking browsing behaviours of users is necessary, to

learn for providing a better user experience [109], tracking can also expose sensitive in-

formation of users. As various tracking techniques evolved, past studies have focused on

the detection [157], measurement [97, 4] and provision of counter-measures [37] against

tracking (e.g., privacy enhancing browser extensions).

We observed prevalence of tracking residential users of popular websites varies across

the globe. The variation of trackers on first-party sites between countries was signifi-

cant; countries that enjoy a greater freedom of expression and information flow show a

stronger presence of trackers; Google dominates in tracking; countries with highest and

lowest tracking prominence, were UK and Ethiopia, respectively.

Our primary focus in this thesis relates to privacy measurements of online services,
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including that of essential services (e.g., websites and Android apps of governments, hos-

pitals and religions). In contrast to commercial online services, users of these essential

online services interact with information that are deeply personal and sensitive in nature.

Therefore, these users do not expect to have their personal information exposed to third

parties (including advertisers and trackers), as otherwise they may be subjected to adverse

consequences (e.g., discrimination, social stigma, physical harm). Besides, users of these

essential online services do not have the luxury of moving to an alternate provider to evade

from tracking. In contrary to the expectations of users, we observed that the analyzed essen-

tial online services are tracked by commercial trackers; commercial trackers from market

leaders (e.g., Google, Facebook) dominates in tracking on online services. Commercial

trackers that are on the analyzed essential online services include both stateful (e.g., third

party scripts and cookies) and stateless (e.g., fingeprinting) forms of tracking. In addition,

trackers also employ other advanced forms of tracking techniques (e.g., session replay).

The information collected by these various forms of tracking include sensitive information

of users. Trackers can co-relate information collected from both commercial and essen-

tial online services to better profile users. Besides, security issues introduced due to the

use of malicious third party libraries, and vulnerabilities (e.g., as a result of using poor

coding standards) in online services, can lead to privacy issues (e.g., exposure of sensitive

information).

Furthermore, 80% of sites that mimic popular sites, that evade from search engine

crawlers, are malicious (including phishing websites). This results in legitimate users fall

prey to these cloaked sites, who intend to use corresponding popular websites. We iden-

tified dissimilarities in these malicious websites (i.e., in request headers, links on the web

page, response content, image of the webpage), between a legitimate browser client (i.e.,

Chrome) and Google search engine crawler, that can be used as heuristics to identify the

presence of cloaking in malicious websites.

192



We also observed that the vulnerabilities resulting from the use of weak TLS certifi-

cates in Internet-connected devices (that support running online services) are significant

compared to that of Top-1M popular websites. These vulnerabilities can eventually cause

privacy exposures of user data, that are used to interact with online services. We also no-

ticed an improvement in the adoption of TLS in the TLS ecosystem for devices from 2016

(29%) to 2018 (74%).

Governments in various jurisdictions have enacted privacy regulations to set guidelines

for the collection and processing of personal information by providers of third party re-

sources of online services — the EU General Data Protection Regulation (GDPR) [100],

California Consumer Privacy Act (CCPA) [263], Virginia Consumer Data Protection Act

(CDPA) [297], Personal Data Protection Guidelines for Africa [153], Canadian Personal In-

formation Protection and Electronic Documents Act (PIPEDA) [135]. However, our work

along with past studies have found exposure of personal information of users from online

services, despite the availability of provisions in specific privacy regulations to protect users

from such exposures of PII [78, 212, 199]. In addition, although tracking giants may claim

that they are taking proactive steps for moving away from tracking, they are instead finding

alternate methods of tracking — e.g., although Google announced a plan to block tracking

cookies (in 2021) from Chrome browser, they are instead replacing third party trackers with

a mechanism known as Topics [278], which does not fully address privacy concerns [39];

with Facebook pixel, first-party cookies are set on domains of outgoing URLs (e.g., from

Facebook to advertisement URL) by attaching tags (FBCLID), to track users without the

use of third-party cookies [30].

Our research points to a direction where more work is required to identify the ever

evolving techniques on tracking/information disclosure, minimize the gap between track-

ing and corresponding mitigation strategies, and close scrutiny of the compliance of privacy
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regulations. As such, possible extensions to our work include but not limited to the follow-

ing.

Extensions to work on tracking. Tracking is not limited to a particular desktop or a de-

vice, and can cross the boundary between multiple devices [319]. Effects of geolocation in

cross device tracking could be an interesting future direction. As Luminati does not proxy

some Google domains, future tracking studies done from a global perspective, should con-

sider similar alternative residential proxy services (if available). Currently, OpenWPM

supports only the Firefox browser. Instead of user-agent manipulation to simulate different

browsers for privacy measurements, use of real browsers may provide a more comprehen-

sive view (but may require significant engineering effort). For example, we could then eas-

ily compare tracking prevalence between the Tor and other browsers. Future work may also

use the OpenWPM WebExtension tool [311] for privacy measurements in a cross-browser

environment using the WebExtension API (supported by all common browsers).

Improvements to tracking block lists. As with other past studies [97], we relied on Ea-

syList/EasyPrivacy [92] filtering rules to identify advertisers and trackers from third party

domains included on websites. However, these filtering rules do not cover all regional

trackers in different countries. In addition, advertising/tracking domains are being removed

from these filtering rules due to requests to comply with Digital Millennium Copyright Act

(DMCA) [5]. Therefore, filtering rules are not a comprehensive technique to identify all

possible trackers on websites. Also, filtering rules do not cover all forms of tracking (e.g.,

fingerprinting). Therefore, future work should focus on improving filtering rules to be more

comprehensive or find an alternative to serve its purpose.

Explore novel forms of tracking. Web technology has evolved to offer immersive brows-

ing experiences using WebVR (or WebXR). Unlike in traditional web sites where adver-

tisements are typically sandboxed (e.g., using iframes), with WebVR, there is no practical

194



mechanism to sandbox ad-serving JavaScripts [171]. In addition, one of the biggest con-

cerns of augmented reality is privacy [161]. This is because, augmented reality technology

can sense user’s actions, and collects information of a user, that may be shared with third

parties; tracking data with WebVR may also include data of highly personal nature (i.e.

bio-metric data such as iris/retina scans, face geometry, voiceprints). Therefore, extending

privacy measurements to include WebVR is an interesting future direction.

Broader look into session replay. While entering textural information to input fields in

web pages, session replay services may receive large payloads containing keywords of

search queries [162] (based on how session replay services are configured by website ad-

mins). Users may type-in information that are highly personal, and are of various aspects

(e.g., religious preferences, medical conditions, racial identity) in search input boxes, that

can be used by third party session replaying services to better profile users. Future studies

should have a broad look into information exposure from session replay services and other

similar techniques, in privacy measurement studies.

Wider look into web cloaking from a global perspective. Cloaking techniques used in

mailicious sites may differ based on the geolocation [202] of the user or the language of web

content. Also, cloaking behaviors may be different for various search engine crawlers (e.g.,

Bingbot, Yahoo, Baidu, Yandex) and browsers (e.g., Edge, Internet Explorer, Firefox). We

leave such studies as future work.
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