
CDNS’ DARK SIDE: IDENTIFYING SECURITY

PROBLEMS IN CDN-TO-ORIGIN CONNECTIONS

BEHNAM SHOBIRI

A THESIS

IN

THE DEPARTMENT OF

CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE

IN INFORMATION SYSTEMS SECURITY

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

DECEMBER 2021

© BEHNAM SHOBIRI, 2022

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Behnam Shobiri

Entitled: CDNs’ Dark Side: Identifying Security Problems in CDN-to-
Origin Connections

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science
in Information Systems Security

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining committee:

Dr. Walter Lucia Chair

Dr. Mohammad Mannan Supervisor

Dr. Amr Youssef Supervisor

Dr. Walter Lucia Examiner

Dr. Suryadipta Majumdar Examiner

Approved by
Dr. Mohammad Mannan, Graduate Program Director

December 8, 2021

Dr. Mourad Debbabi, Dean

Gina Cody School of Engineering and Computer Science

ABSTRACT

CDNs’ Dark Side: Identifying Security Problems in CDN-to-Origin

Connections

Behnam Shobiri

Content Delivery Networks (CDNs) play a vital role in today’s Internet ecosystem. To

reduce the latency of loading a website’s content, CDNs deploy edge servers in different

geographic locations. CDN providers also offer important security features including pro-

tection against DoS attacks, Web Application Firewalls (WAF), and recently, issuing and

managing certificates for their customers. Many popular websites use CDNs to benefit

from both the security and performance advantages.

For HTTPS websites, TLS security choices may differ in the connections between end-

users and a CDN (front-end or user-to-CDN), and between the CDN and the origin server

(back-end or CDN-to-Origin). Modern browsers can stop/warn users if weak or insecure

TLS/HTTPS options are used in the front-end connections. However, such problems in the

back-end connections are not visible to browsers or end-users, and lead to serious security

issues.

In this thesis, we primarily analyze TLS/HTTPS security issues in the back-end com-

munication; such issues include inadequate certificate validation and support for vulnerable

TLS configurations. We develop a test framework and investigate the back-end connection

of 14 leading CDNs (including Cloudflare, Microsoft Azure, Amazon, and Fastly), where

iii

we could create an account. Surprisingly, for all the 14 CDNs, we found that the back-end

TLS connections are vulnerable to security issues prevented/warned by modern browsers;

examples include failing to validate the origin server’s certificate, and using insecure ci-

pher suites such as RC4, MD5, SHA-1, and even allowing plain HTTP connections to the

origin. We also identified 168,795 websites in the Alexa top million that are potentially

vulnerable to Man-in-the-Middle (MitM) attacks in their back-end connections regardless

of the origin/CDN configurations chosen by the origin owner.

iv

Acknowledgments

I would like to thank my supervisors, Dr. Mohammad Mannan and Dr. Amr Youssef for

their constant support and guidance throughout this project. I would also like to thank Dr.

Daniel Migault from Ericsson for all his help. Their continued support gave life to this

project and made this research possible. I would also like to express my gratitude for their

patience, motivation, enthusiasm, and immense knowledge. I am incredibly lucky to be

able to work under the close guidance of my supervisors who inspired me with bright ideas,

helpful comments, suggestions, and insights which have contributed to the improvement of

this work.

I would also like to thank my family for sharing their knowledge and experience and

being there beside me on my rainy days. I learned a lot from everyone, especially, my

parents who helped me in every aspect of my life. I would like to dedicate this thesis to

my parents. This journey would not have been possible without their encouragement and

support. I am incredibly lucky to have them in my life.

I received substantial financial support from my supervisors and Concordia University

and Ericsson (Canada). I am thankful to all for easing the financial burden while doing this

research.

v

Lastly, I would like to thank my peers at the Madiba Security Research Group. I feel

honored to have worked with them, especially, Sajjad Pourali, Mounir Elgharabawy and

Md. Shahab Uddin. I feel lucky and grateful to be a part of this research group. They all

provided me with the opportunity to learn in a positive learning environment and made me

more and more interested in all aspects of systems security.

vi

Contents

List of Figures x

List of Tables xi

List of Acronyms xii

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 3

1.3 Problem statement . 4

1.4 Contributions . 5

1.5 Thesis organization . 7

2 Background 8

2.1 HTTPS . 8

2.1.1 Certificate validation . 9

2.1.2 TLS security primitives . 10

2.2 CDN . 12

vii

2.2.1 Request-routing mechanism . 13

2.2.2 CDN security features . 14

2.3 Threat model . 15

2.4 Related work . 16

3 Methodology 20

3.1 Evaluation framework (back-end connection) 20

3.1.1 Security parameters . 21

3.1.2 Validating the origin’s certificate 23

3.1.3 Default settings and extra options 26

3.2 Feature extraction (front-end connection) 27

4 Results 33

4.1 Possible TLS-vulnerabilities (back-end connection) 33

4.1.1 Lack of origin server certificate validation 34

4.1.2 Virtual upgrade and weak security parameters 35

4.1.3 Vulnerable default settings and options 36

4.2 CDN market share (from front-end connection) 37

4.2.1 CNAME as request routing mechanism 38

5 Discussion 42

5.1 Practical implications . 42

5.2 Likelihood of MitM attacks . 46

5.2.1 Possible attack scenarios . 48

viii

5.3 Mitigation . 51

5.4 Limitations . 52

5.5 Responsible disclosure . 54

6 Conclusion and future work 56

Bibliography 58

ix

List of Figures

1 The front-end and the back-end connections. 2

2 Overview of the attack model. 16

3 Estimated market share of CDNs. 38

4 Usage of CNAME in CDNs . 39

5 Vulnerable back-end connection based on the CDN. 46

6 The on-path attacker on the most assigned IP path to the origin server. . . . 47

x

List of Tables

1 Summary of the tests performed in the back-end connection. 21

2 Reverse DNS address for CDNs. 29

3 Unique HTTP headers for CDNs. 30

4 Unique CNAME for CDNs. 31

5 Summary of origin certificate validation of CDNs. 35

6 Summary of weak security parameters supported by CDNs (back-end). . . . 40

7 The number of websites using known CDNs in Alexa top 1 million. 41

8 Number of websites using popular hosting provider. 41

9 The number of possible vulnerable websites. 43

10 Top 10 vulnerable websites. 45

xi

List of Acronyms

AES Advanced Encryption Standard.

CA Certificate Authority.

CDNs Content Delivery Networks.

CRL Certificate Revocation List.

DoS Denial of Service.

MitM Man-in-the-Middle.

OCSP Online Certificate Status Protocol.

PKI Public Key Infrastructure.

SAN Subject Alternative Name.

SNI Server Name Indication.

TLS Transport Layer Security.

WAF Web Application Firewalls.

xii

Chapter 1

Introduction

1.1 Overview

Content Delivery Networks (CDNs) are an essential part of the Internet. Due to their glob-

ally distributed network infrastructures, high-performance computing power, and high net-

work bandwidth, many websites, including many popular sites, are using CDNs. Accord-

ing to a Cisco report [17], 56% of the Internet traffic was carried by CDNs in 2017, and

by 2022, Cisco predicts that CDNs will carry 72% of total Internet traffic. To reduce the

latency of loading a website’s content, CDNs deploy edge servers scattered across various

geographic locations. Moreover, CDNs provide many different security advantages includ-

ing Denial of Service (DoS) protection, Web Application Firewalls (WAF), and certificate

management for their customers. In order to reap these benefits, many popular websites

opt to use CDNs.

When a website is using a CDN, before serving the client, the CDN’s edge servers

1

request the data through a connection to the origin server and cache the website’s content.

When clients request the website, they get redirected to the closest CDN edge server, which

returns the cached content. Therefore, instead of a straightforward connection between the

client and the origin server, there is a connection between the client and the CDN edge

server and another connection between the CDN and the origin server. We refer to the

communication between the CDN and the origin server as the “back-end” (CDN-to-Origin)

connection. Similarly, we refer to the communication between the CDN and the client as

the “front-end” (user-to-CDN) connection [36]; see Figure 1.

Figure 1: The front-end connection is the connection between the client/user and CDN,
and the back-end connection is between the CDN and the origin.

2

1.2 Motivation

While CDNs provide various performance and security benefits, their centralized role in the

current internet ecosystem makes them a high-priority target for attackers. Moreover, find-

ing a TLS-vulnerability in one CDN would lead to compromising all the websites that are

relying on that CDN, including high-profile and popular websites. Furthermore, due to the

man-in-the-middle nature of CDNs and the end-to-end nature of HTTPS, many potential

issues can arise.

Since the user’s browser is not involved in the back-end communication, the browser

would not warn the end-user about any known TLS-vulnerabilities in back-end communi-

cation, specifically for HTTPS websites. In other words, while users think that they are

connecting to a website with the best HTTPS security practice (according to the browser

and certificate), users are oblivious to any TLS-vulnerability in the back-end communica-

tion. Therefore, the back-end communication, in particular, can be a potential target for

attackers. The back-end TLS-vulnerabilities can have different root causes including the

lack of certificate validation, the use of weak ciphers, weak key exchange configuration,

or outdated TLS version. These TLS-vulnerabilities may lead to information leakage and

impersonation against popular websites served via CDNs. For instance, the back-end con-

nection can be set to HTTP, while the CDN has been configured to HTTPS for the front-end

connection. Since the end-users are only aware of the front-end connection, they will only

see the secure front-end connection. However, there is no encryption for the back-end con-

nection. Moreover, the origin owner can use the CDN (which was meant to be used as an

3

extra caching layer) to give the users a false sense of security without actually providing

the security.

In 2014, Liang et al. [36] investigated the certificate validation process of back-end

communication for five CDNs, but not the security parameters such as ciphers and key

exchange configurations. Other studies [28, 29, 33] explored the back-end connections’ IP

addresses (the number of egress IPs and ingress IPs), open ports, and weaknesses in the DoS

protection for the CDN-powered websites. Nonetheless, the HTTPS security of back-end

communication remains unexplored. On the other hand, to identify websites using CDNs

(e.g., for measuring security impacts of CDN known TLS-vulnerabilities), past research

also proposed several CDN front-end scanning methodologies, see e.g., [13, 36]. However,

such techniques cannot be relied on anymore for reasons including: recent privacy policy

changes in the Whois database, not considering the Server Name Indication (SNI) extension

(being more widely used in recent years).

1.3 Problem statement

The primary goal of this thesis is to identify known TLS-vulnerabilities associate with

CDNs’ back-end communication. The back-end connection is particularly important since

the end-users cannot validate it. Moreover, in the back-end connection, the CDN acts as

an HTTPS client and the origin as the HTTPS server. Therefore, the CDN should check

the security of the back-end connection (e.g., the origin certificate validation). In addi-

tion, since the previous researchers have not explored the options and the default setting of

4

each CDN, we want to investigate the options that CDNs providers offer in the back-end

connection.

Subsequently, we want to answer how many websites will be affected in case of a TLS-

vulnerability in a given CDN. Thus, we need to be able to identify CDN-powered websites

and the CDN that a given website is using.

1.4 Contributions

We summarize our contributions as follows:

1. We develop a test framework to evaluate security issues in CDNs’ back-end (CDN-

to-Origin) TLS connections. Our framework includes tests for back-end certificate

validation (i.e., whether the CDN performs proper certificate validation for the origin

website), the use of weak cryptographic parameters such as RC4, and weaknesses

in the default CDN security configurations affecting the back-end connection. This

is the first such comprehensive framework for testing TLS security in the back-end

CDN connections.

2. We use our test framework to evaluate the back-end TLS connections of 14 leading

CDNs. In terms of certificate validation (tested using eight obviously malformed

certificates), we found that none of the CDNs validate the origin server’s certificate

properly. 9/14 CDNs, including Microsoft Azure, do not properly perform the basic

certificate validation tests such as self-signed, wrong Common Name, and unknown

certificate issuer. The remaining 5/14 CDNs do not validate the revocation status of

5

the origin’s certificate.

3. In terms of weak cipher suites, 9/14 CDNs support 1024-bit and 2048-bit Diffie-

Hellman (DH) prime moduli; and 3/14 CDNs support the broken RC4 cipher. Note

that, modern browsers terminate (not as a warning) connections that use such DH

configurations or the RC4 cipher. All CDNs also support the weak SHA-1 hash

function (including 1/14 supports MD5).

4. In terms of weak/insecure default settings, we found that 5/14 CDNs (including

Cloudflare and Amazon CloudFront) do not use a secure connection in their back-

end communication, i.e., in the Amazon CloudFront, the CDN-to-Origin connection

is HTTP by default.

5. We develop a front-end scanning tool for identifying CDN-powered websites, and

detect 168,795 websites among the top Alexa 1M sites that are using vulnerable

CDNs; all these highly popular sites are possibly affected by our findings regardless

of the origin/CDN configurations chosen by the origin owner. We have disclosed

our results to all affected CDNs, some of which also confirmed/fixed the issues we

identified.

6. We open-sourced our back-end security evaluation framework, and our front-end

scanning tool used to identify CDN-powered websites. Beside researchers, website

admins can use our framework to identify and monitor security issues in a CDN’s

6

back-end connection. Our scanner can be used as a measurement tool for both secu-

rity and non-security use cases.1

We have disclosed all our findings to the respective CDNs, and summarized the vendor

responses in Section 5.5. Some of the work presented in this thesis has been peer-reviewed

and accepted in the following article:

• B. Shobiri, M. Mannan, and A. Youssef. CDNs’ Dark Side: What Your BrowserCan-

not See. InDigital Threats: Research and Practice (DTRAP), Accepted, pages1–22,

2021.

1.5 Thesis organization

The remainder of the thesis is organized as follows. In Chapter 2, we first present a brief

background of HTTPS/TLS and CDN. In Chapter 3, we present our framework and related

tests we use for back-end connection, as well as the features we used for identifying the

CDN-powered websites. In Chapter 4, we present the results of our experiment for 14

leading CDNs. In Chapter 5, we discuss the implication of our findings in the current

HTTPS ecosystem as well as potential mitigation for the discovered TLS-vulnerabilities.

Finally, in Chapter 6, we present our conclusion and future work.

1https://github.com/Behnam-Shobiri/CDN-Finder

7

Chapter 2

Background

In this chapter, we provide a brief background on HTTPS/TLS and CDNs, and discuss our

threat model as well as the related works.

2.1 HTTPS

HTTPS provides end-to-end encrypted communication between the client and the server.

HTTPS provides confidentiality, integrity, and authentication. Therefore, the connection

is protected against both active and passive attackers. HTTPS relies on Transport Layer

Security (TLS) protocol for security primitives. To provide authentication, TLS employs

Public Key Infrastructure (PKI) and X.509 certificates. For example, in TLS 1.3, in the

“Certificate Verify” message, the server provides the digital signature over the transcript

hash (hash of all previous handshake messages). This massage proves that the server is the

owner of the presented certificate and ensures the integrity of the handshake messages until

8

that point in the handshake. Although there are minor changes in different TLS versions,

the previous versions follow a similar process as TLS 1.3. The client needs to authenticate

the server certificate and the corresponding digital signature to avoid the MitM attack.

According to TLS 1.3 RFC [44]: “The receiver of a CertificateVerify message MUST

verify the signature field.”

2.1.1 Certificate validation

Certificates bind the owner of the domain to a public key. Modern browsers validate the

certificate based on the certificate chain and the certificate name. Browsers also check

the revocation status of the certificate. If the certificate does not satisfy all the required

validations, the browsers will show a warning/error to indicate the risk. Below, we explain

each item that modern browsers use for verifying the certificate.

• Chain validation. A legitimate certificate must be signed by a valid root Certificate

Authority (CA). Since the client has access to trusted root CAs, the client can validate

the X.509 certificates and authenticate the server. However, since in most cases, the

root CAs do not sign the leaf certificates, the server presents the full chain along with

all the intermediate CAs certificates in the handshake; thus, the client can validate

the certificate chain. To validate the certificate chain, the client authenticates all

the intermediate CAs to the point that a trusted CA signed the intermediate CA’s

certificate. If the certificate chain validating process terminates with a trusted CA,

the browser accepts it as a certificate with a valid issuer.

9

• Name validation. To ensure that the presented certificate was issued for the same

domain that the client intended to connect, the client browser validates the Common

Name (CN) and the Subject Alternative Name (SAN) extension. The SAN extension

can be used to cover subdomains individually or, it can cover multiple subdomains

(by using wildcards). The SAN extension can also be used to cover multiple different

domains in a single certificate. The certificate is valid for the domain if the domain

is present in the SAN or CN field.

• Revocation status. If the private key corresponding to the certificate is compromised,

the certificate should be revoked. There are a few mechanisms for certificate re-

vocation including, Certificate Revocation List (CRL) and Online Certificate Status

Protocol (OCSP). The revocation mechanism may differ; however, regardless of the

revocation mechanism, the client should check the revocation status of the certificate

to avoid accepting revoked certificates. The owner of the certificate can ask the CA

(that has issued the certificate) for revocation. For example, Let’s Encrypt uses OCSP

for revocation [34].

2.1.2 TLS security primitives

A TLS client starts the connection with the Client Hello message in which the client

presents the supporting cipher suites (ordered based on the client preferences), available

extensions, TLS version, etc. The TLS server chooses the best fit cipher suite and other

parameters and sends them back to the client in the “Server Hello” message. To protect

the confidentiality and integrity of the connection, modern browsers warn the client upon

10

receiving weak cryptographic primitives such as weak cipher suites, broken versions of

TLS/SSL, or any other known TLS-vulnerability.

During the TLS connection, the client and server employ a key exchange protocol to

establish a shared secret. Depending on the TLS version, the key exchange could be based

on RSA or (EC)DH(E). For example, in TLS 1.3, RSA has been deprecated due to lack of

forward secrecy. One of the factors for DH security is the prime moduli that it uses. In

2015, the Logjam attack revealed that, by attacking a small number of common primes,

large amounts of communications can be compromised when using Diffie-Hellman (DH)

1024-bit or smaller prime moduli [2, 46]. Nowadays, modern browsers do not support

DH with 2048-bit prime moduli as well. TLS clients can also use extensions for various

reasons. For example, the client can use the Server Name extension to indicate the domain

name (in case a single IP address is used for multiple domains).

Server Name extension. The client must provide this extension (also known as Server

Name Indication) for the HTTPS server when the server supports multiple domains (with

multiple certificates) on a single IP. Using this extension, the client indicates the domain

that the client wishes to connect. Subsequently, the server includes the corresponding cer-

tificate in the TLS handshake. Thus, the server can support multiple HTTPS-enabled web-

sites using a single IP.

11

2.2 CDN

A CDN is a geographically distributed infrastructure that website owners can use to re-

duce the access time for their website. Though CDN’s primary purpose is to reduce the

latency of loading the website, CDN providers also offer security services such as protec-

tion against DoS attacks and Web Application Firewall (WAF). When the user requests the

CDN-powered website, the CDN’s DNS server redirects the user to the best-fit edge server.

The CDN load balancing system chooses the best edge server based on different metrics

including, location and available resources on the edge servers [8, 28]. If the website’s

content is available in the chosen edge server, the edge server sends the cached content;

otherwise, it fetches the content from the origin server using a separate connection and

caches the content. Therefore, when other users request the same content, the edge server

sends the cached content, which significantly reduces the accessing time.

To use the security advantages offered by both CDNs and HTTPS, websites delegate

their domain using a DNS-based request routing mechanism such as using CNAME or

using CDN’s DNS server [36]. CDN edge servers need access to a valid certificate and

corresponding private key for the delegated domain to complete the HTTPS handshake.

Access to unencrypted data allows the edge server to filter malicious traffic using WAF,

Intrusion Detection Systems (IDS), and Intrusion Prevention Systems (IPS). Furthermore,

due to the massive bandwidth and computational power of the CDN’s edge servers and

CDN load balancing system, CDN can mitigate DoS attacks. Moreover, since each CDN

provider has a limited number of IPs, CDNs use SAN or SNI extension for their edge

12

servers’ TLS certificate. Notably, websites that use Cloudflare can create serverless [22]

applications using the Cloudflare Workers [20] without using an origin server. However,

this configuration was not introduced when we began our study and by the time that we

finished our study, only the beta version was available. Therefore, it is not considered in

our results.

2.2.1 Request-routing mechanism

CDN services use request-routing techniques to direct user requests from a website to the

CDN. Subsequently, the appropriate edge server will be chosen according to various poli-

cies and metrics. Previous researchers introduce request-routing techniques [8, 36]; how-

ever, we will briefly explain the request-routing techniques that we encounter during our

experiment.

• NS redirection. In this method, the website uses the CDNs’ DNS. Since the CDN

controls the DNS, the CDN can redirect the user to the chosen edge server (by pro-

viding the edge-server IP address) [8, 36].

• CNAME. CNAME (canonical name) records are used to link domain names to other

names. CDN uses this method to redirect the users to their edge-servers. The website

owner needs to add the unique CDN CNAME to their DNS; thus, when the end-users

visit the website, they will be redirected to the CDN DNS server. Consequently, the

CDN’s DNS will redirect the end-user to the chosen edge-server. Notably, one of

the limitations of this method is the DNS overhead that end-users encounter while

13

accessing the website [8, 36].

• URL rewriting (content modification). Generally, clients are instructed to retrieve

embedded objects from the origin server when using embedded HTML directives.

Using URL rewriting, CDNs will be able to modify references to embedded objects

to retrieve them using the best surrogate. Therefore, the CDN can redirect the client

directly to the edge server that is best suited to handle their request. The CDNs can

use this method by prior URL rewriting and on-demand URL Rewriting. Neverthe-

less, this method has some limitations. Mainly, since the end-users directly connect

to the origin, the origin cannot benefit from the security advantages that CDNs pro-

vide, including WAF and DoS protection.

2.2.2 CDN security features

While the primary purpose of the CDNs is to accelerate the page load time for the end-

users, CDNs provide many security advantages. Below we briefly explain a couple of these

security features that CDNs provide.

• Controlling malicious traffic. Using IDS, IPS and WAF, CDNs investigate the traf-

fic for malicious traffic. CDNs compare the traffic against a set of predefined rules.

Notably, to harvest the maximum security benefits that the mentioned security appli-

ances offer, CDNs need to access plain HTTP data. For example, to prevent SQL

injection attacks, the CDN must be able to investigate the plain text data [23, 31].

• DoS/DDoS prevention. CDNs can protect their customers against DoS/DDoS attacks

14

using different methods. CDNs have access to rich bandwidth and powerful comput-

ing power and can scale up their edge servers in case of a DDoS attack. Moreover,

CDNs use automatic bot discernment such as CAPTCHA challenges. The attacker

must solve the challenge before the CDNs send the requested resource. Notably,

some CDNs use the same method to protect the websites against Tor traffic. There-

fore, the attacker must overcome the automatic bot discernment as well as CDN

bandwidth and computational power to perform the DoS/DDoS attack [23, 31].

2.3 Threat model

The Dolev-Yao model [25] presents several models that make it possible to discuss protocol

security in detail (including protocols utilizing public-key encryption to establish secure

network connection). Following the Dolev–Yao model, we assume an on-path attacker for

the back-end communication (the connection between the CDN and origin server). The

attacker can alter, drop, or redirect the traffic; she can also act as a man-in-the-middle; see

Figure 2. However, the attacker does not have any capabilities beyond the HTTPS/TLS

attack model (such as breaking the secure encryption or issuing a valid certificate without

owning the domain). Several CDN factors can facilitate the attacker to be on the back-

end communication path; such factors include the inadequate number of egress IPs, high

IP-churn ratio, and optional features like the origin shield (discussed more in Section 5.2).

15

Figure 2: Overview of the attack model. The attacker is an on-path attacker in the back-end
communication.

2.4 Related work

Liang et al. [36] analyzed both back-end and front-end CDN connections. For their front-

end connection, they conduct a measurement study for 20 known CDNs. They focused on

two main issues: the TLS delegation methods and problems when a website uses CNAME

or DNS as a request routing mechanism; and the deployment status (including the response

code and any warning from the browser) of HTTPS for the same websites. From Alexa

top 1 million, they identified 10,721 HTTPS-enabled websites that were using CDN with

DNS or CNAME. They found 31.2% of these websites showed a valid certificate. Among

them, 20.1% used custom certificates (custom certificates is when CDN would ask users to

share their private keys), and 11.1% used a shared certificate (using the SAN extension).

16

The other 68.8% showed an invalid certificate, among them 15.3% end up showing a valid

HTTP status code 200 and the other 53.5% either showed an error response code (40x or

50x) or redirected to HTTP.

For their back-end connection, Liang et al. [36] investigated 5 CDNs and their certifi-

cate validation process. 3/5 CDNs supported HTTPS, and none of them validated the origin

certificate. However, they did not review the security parameters nor the default settings

of the CDNs. Moreover, they investigated the TLS delegation methods and problems as-

sociated with each of them. Subsequently, to solve the detected TLS-vulnerabilities (both

in front-end and back-end connection), they proposed a TLS delegation method based on

DANE. As a case study, they compared the time that Incapsula’s CDN takes to issue a SAN

certificate with the time it takes for the same CDN to delete the domain name from the SAN

list. They also measured the time that it takes for Incapsula to revoke the SAN certificate.

Cangialosi et al. [13] analyzed the prevalence of private key sharing. According to their

attack model, if the owner of the IP address is not the same as the owner of the domain, it

would be considered as private key sharing. For example, if the website is using a hosting

provider, they would consider it as a private key sharing. This attack model uses the fact that

web hosting providers are in control of the servers that websites are using. Subsequently, if

a powerful attacker compromises one of these hosting providers, he/she gains access to all

private keys. Therefore, the attacker can impersonate all of the websites. Moreover, they

found that many websites share their private keys with more than one hosting provider or

CDN. In particular, 76.5% of the sites they scanned were sharing at least one private key

with third-party hosting providers or CDNs. They realized that a small number of hosting

17

providers and CDNs are controlling many organizations’ private keys. For example, they

found that if the attackers can compromise ten top hosting providers, they would control

45.3% of the domains in their scan. They did not consider the certificates that were using

the SNI extension, as SNI was not widely adopted during their scan. We cannot use their

methodology to determine if two different domains are owned by the same organization

since the privacy policy in their dataset (such as Whois) has changed. They also compared

the certificate management by hosting providers with self-management. They showed that

third-party hosting providers would react slower but more thoroughly to large-scale known

TLS-vulnerabilities.

Guo et al. [28] showed six different attacks using CDNs, based on the fact that CDNs

do not validate the ownership of the origin server. In other words, when an attacker regis-

ters a new domain in a CDN, without any validation, the CDN provides a link that points

to the origin server. They used this feature and created six different attacks. Furthermore,

they mentioned that most of the CDNs have a free trial (or free service) which makes the at-

tacker’s job easier. They also presented a methodology to identify the inbound IP addresses

of 8 CDNs. They used HTTP headers to identify the inbound IPs and extracted distinguish-

able features (in the HTTP header) for each CDN. In our work, we used the HTTP headers

to identify websites using a CDN that still includes the distinguishable HTTP header (see

Section 3.2). Additionally, we successfully register for the CDNs that needed a real credit

card with a gift card tied to PayPal and they accepted it.

Guo et al. [29] showed three different attacks to break the CDN’s DoS protection. By

using the discrepancy between the HTTP/2 and HTTP1, they discovered the attacker could

18

create a specially crafted request packet that gets amplified in the back-end communication,

leading to a bandwidth amplification attack. They also showed that some CDN providers

start forwarding the POST request when they received the header and, the attacker could

use the POST header to exhaust the back-end connection limits and create a DoS attack.

Moreover, they discovered that the CDNs use a very limited number of IPs to connect to

the origin. By dropping the connection for these egress IPs, the attacker can prevent most

users to connect to the websites. The inadequate number of egress IPs helps the attacker (in

our attack model) in the back-end to be on path-attacker for the majority of the back-end

communications.

Louis et al. [45] investigate similar TLS security issues in the presence of TLS mid-

dleboxes. They investigate the enterprise interception appliances. They analyzed 13 ap-

pliances and found that three appliances do not check the certificate, and three use pre-

generated certificates. They also checked the security parameters and found that some of

the investigated appliances support vulnerable security parameters. For example, 11 ap-

pliances accepted the certificates that were signed using MD5. Their framework is not

directly applicable for analyzing CDN back-end connections. However, in our back-end

framework, we use the relevant TLS-vulnerabilities.

19

Chapter 3

Methodology

In this chapter, we first discuss our test framework for the back-end connection. Then, we

discuss our front-end scanning technique for identifying CDN-powered websites.

3.1 Evaluation framework (back-end connection)

In order to investigate the security of the back-end connection, we check the following

factors in back-end communication: (1) the ciphers, hashing algorithms, and acceptable

DH configuration that CDNs support; (2) the origin certificate validation process by the

CDN provider; and (3) the default settings and options for each CDN provider. Table 1

summarizes the tests that we performed for the back-end connection. In the rest of this

section, we explain in detail how we test these three factors.

20

Type of the back-end test Comments
Certificate related Check the origin certificate validation with the following

malformed certificate:
1- Self-signed
2- Signature mismatch
3- Unknown issuer
4- Wrong Common Name (CN)
5- Certificate with NULL in CN field
6- Certificate with NULL in SAN
7- Fake GeoTrust Global CA
8- Revoked

Security parameters Investigate the following supported security parameters
(from ClientHello message):
1-Weak ciphers, hash algorithms
2-Vulnerable DH groups
3-TLS versions

Default and options Analyze the default configuration and options regarding
the origin certificate validation and security parameters.

Table 1: Summary of the tests performed in the back-end connection.

3.1.1 Security parameters

To monitor the CDN’s back-end communication, we create a website (with the domain

name “www.cdn-tests.ga”). Our website mimics “badssl.com” [7], a web service that im-

plements common known TLS-vulnerabilities related to HTTPS that is part of the Chromium

project.2 We use badssl.com’s GitHub as a reference and modify the source code to work

for our domain. Following badssl.com, each subdomain in our website has a specific known

TLS-vulnerability. For example, dh1024.cdn-tests.ga uses DH over a 1024-bit prime group.

We use our own server to have full control over the network traffic. On our server, we install

the modified Docker image of badssl.com that is running on Ubuntu 18.04 LTS. To confirm

our findings, we capture the traffic from the CDN to our server by running Wireshark [1] on

2www.chromium.org

21

our server. To avoid the cache-hit feature of the CDN, we clear the cache (using the CDN’s

admin portal). We use IP ownership information to validate that the IP address belongs to

the specific CDN (at the time we connect to the website through the CDN for the first time

after clearing the cache).

To discover all the acceptable configurations for each CDN, we capture the correspond-

ing packets from the CDN provider to our server. We first check their protocol to see if

the CDN provider connects to our server using HTTP instead of HTTPS. If the CDN uses

HTTPS, we further analyze the TLS “Client Hello” message from the CDN provider. We

observe the supported cipher suites, hashing algorithms, and TLS version that the CDN

supports. We refer to the mentioned variables as security parameters.

We deploy our website and its subdomains on each CDN. Afterward, we check the

subdomain as an end-user. If we can see the content of the misconfigured subdomain,

it indicates that the CDN server accepts the misconfigured subdomain as a valid HTTPS

configuration. Notably, when CDNs do not accept the origin configuration, they show an

origin-related error page, and sometimes explicitly display the origin issue.

To test Diffie-Hellman (DH) related issues, following badssl.com, we create four sub-

domains that use different DH prime sizes: 480, 512, 1024, and 2048. Modern browsers

detect and terminate (not as a warning) all such DH primes. To test ciphers related issues,

we create subdomains that each supports a specific broken/weak cipher. Ciphers include

RC4, RC4 with MD5 as a hashing algorithm, and no cipher (null). All the mentioned

ciphers are considered vulnerable and modern browsers terminate the connection. Further-

more, a previous study [11] showed that attackers can break connections that use block

22

ciphers with small block lengths including 3DES; thus, we also check 3DES.

Finally, to confirm our findings, we repeat the same experiments using badssl.com and

its corresponding subdomains as the origin and verify our results. Notably, this option

is not available for CDNs that use their own DNS server as a request routing mecha-

nism (Cloudflare and ArvanCloud), since it would require changing the DNS server of

badssl.com (which we do not control).

3.1.2 Validating the origin’s certificate

If a TLS client does not authenticate the server’s certificate, the TLS connection can be

subjected to a man-in-the-middle attack. In the regular TLS scenario, the user’s browser

validates the server’s certificate to make sure that the browser is connecting to the right

server. However, when the end-users are connecting to a website that uses a CDN, they

get redirected to the CDN edge server which returns the cached data. Thus, the user’s

browser can only authenticate the certificate which the CDN provider presents. In the

back-end connection, the TLS client is the CDN server and the TLS server is the origin;

therefore, CDN providers are expected to validate the origin server certificate. A few CDNs

such as Cloudflare, StackPath, and BunnyCDN offer validating the origin certificate as an

option; i.e., by default, these CDNs will perform no origin certificate validation. For all the

certificate related tests, we enable this feature. We create different malformed certificates

to check if the CDN is properly validating the origin server’s certificate. These checks

include validating the certificate chain, the certificate’s Common Name (CN) and Subject

Alternative Name (SAN), and the Certificate Authority (CA) that issued the certificate. We

23

also test for NULL prefix attacks [40].

We cannot use badssl.com’s certificates for our subdomains since they are not issued

for our domain. However, we configure the CDNs to use the badssl.com’s subdomains as

the origin to confirm our findings. We also use the badssl.com’s subdomain as the origin for

the certificates that need special attention from a CA (badssl.com CA partners in this case).

To create malformed certificates for our subdomains, we use the OpenSSL [41] library,

following Waked et al. [45]. However, we cannot create all of their malformed certificates

with a valid Certificate Authority (CA). Therefore, we only generate the ones that do not

need a valid CA. Below, we define our malformed certificates and how we create them.

• Self-signed certificate. We create a certificate that is signed using its private key. With

this test, we verify that CDNs avoid accepting self-signed certificates since anyone

can create a self-signed certificate for any domain.

• Signature mismatch. We use the Let’s Encrypt [35] Certificate Authority (CA) to

obtain a legitimate certificate for our domain. We use our legitimate certificate and

replace one byte of the certificate with a random value (at the end of the certificate).

Since the signature is positioned as the last item on certificates, this creates a signa-

ture that cannot be validated using the CA’s public key. Afterwards, we check the

domain with a browser and verify that browser shows the signature mismatch error.

With a mismatched certificate, we confirm that CDNs check the signature on the

certificate.

• Unknown issuer. We use the OpenSSL library to create a Certificate Authority (CA).

24

Consequently, we use the CA’s private key to sign our domain’s certificate. With this

test, we make sure that CDNs check the issuer to be a valid root CA.

• Wrong Common Name (CN). We use a valid certificate that was issued by a valid CA

for a different domain (that we control). Therefore, it does not have the right CN

value for the domain name that presents it. With this test, we make sure that CDN

providers check the CN field properly, and their validation is not just limited to the

signature and issuer.

• Fake GeoTrust Global CA. In this experiment, we mimic the Geo Trust Global CA (a

root CA). We create a CA certificate with the same Common Name (CN = GeoTrust

Global CA), the Organization field (O = GeoTrust Inc.), and the Country field (C

= US). We signed our fake root CA using its private key. Subsequently, we signed

our website’s certificate using the fake CA’s private key. Using this test, we verify

that CDNs do not rely only on presented values, and properly verify the root CA’s

signature.

• Certificate with NULL in CN field. NULL prefix attacks [40] were presented in

Blackhat 2009. Due to the incorrect parsing of the NULL character in the CN by

browsers, attackers were able to impersonate the websites without owning a certifi-

cate. We create a certificate with the NULL character in the CN field and obtain

our legitimate certificate from Let’s Encrypt. We put NULL in the CN field of the

certificate and register the corresponding domain name to discover if CDN providers

are vulnerable to this attack.

25

• Certificate with NULL in SAN field. This malformed certificate is the same as the

Certificate with the NULL character in the CN field. However, here we place the

NULL character in the SAN field to perform the same attack on the domain names

inside the SAN field.

• Revoked. We generate and revoke a valid certificate for our domain using Let’s En-

crypt. After a day, we check the domain with different modern browsers and verify

that browsers detect the revoked certificate.

Note that, we refer to basic certificate validation for all the certificate-related checks,

excluding the revocation test. We configure our server to present these certificates to the

clients including CDNs. To ensure that the CDN fetches the new certificate, we change

the HTML content and clear the CDN cache (using the CDN’s admin portal). We then

request the content through the CDN provider (as a normal user). If we see the new content

without any origin-related error from CDN, we conclude that the CDN has not validated

the certificate properly.

3.1.3 Default settings and extra options

When the website owner is deploying the website on a CDN, there are many options and de-

fault settings. Depending on the CDN provider, options and default settings change vastly.

During our experiments, we identify the available options that would create a known TLS-

vulnerability for the website. If an existing option makes a website vulnerable, it should

not be offered by the CDN provider in the first place. In particular, since the user’s browser

26

cannot warn the user about these risks, a vulnerable option in the back-end becomes even

more severe. The default settings are also important from the security perspective. The

CDN provider should have a default setting that aligns with the best security practices. If

CDN providers have weak default settings, the website admins are expected to go through

configurations, and change them to secure options (e.g., changing HTTP to HTTPS for the

back-end connection).

3.2 Feature extraction (front-end connection)

To identify the websites that are using a CDN, we extract different features from websites.

Although previous studies [28, 29] used similar features, we modify and update the param-

eters of their features due to various reasons including, the new extensions in certificates

such as SNI, changes in privacy policies, and the elimination of some features that would

leak security-sensitive information. These features are reverse DNS, HTTP headers, and

CNAME (explained below). We developed Python scripts to connect to all the domains in

the Alexa top one million with a 60-second timeout for each website. For each website,

we extract and store all the features. Using the known features for each CDN (See Table 2,

Table 3, and Table 4), we identify the domains employing the known CDNs. To identify

the popular unknown CDNs, we cluster the extracted features based on their reverse DNS

(top referred reverse DNS entries) and manually check them to verify that they belong to

a CDN. Using this approach we identify 12 new CDN (see Table 7). To accelerate the

crawling time for Alexa top million websites, we concurrently launched 20 instances of

27

our crawler that would start from different indexes in Alexa top 1 million (on a machine

with Ubuntu 18.04, i9-9900K CPU, and 32 GB of RAM). It took approximately one week

to finish the scan. Below, we explain the features that we extract from each website to

identify the websites that are using a CDN.

• Reverse DNS. Besides the typical role of the Domain Name System (DNS) that is

mapping of domain to IP address, organizations can provide reverse DNS infor-

mation on their DNS server. Many organizations (including some CDN providers)

choose to publish the reverse DNS information to provide hints about the owner of

the IP. By performing a reverse DNS query on the IP of the websites, we can distin-

guish the websites that are using some known CDNs [13]. For example, the domain

name “www.weibo.com” would resolve to IP address 23.2.4.161. Reverse DNS for

this IP would point to “a23-2-4-161.deploy.static.akamaitechnologies.com”, clearly

pointing to Akamai [3]. If the organization that owns the IP (in this case, the CDN

provider) has published the reverse DNS information, we can identify the websites

which are using known CDNs. Furthermore, some organizations that provide both

hosting and CDN services publish clear hints in their reverse DNS to distinguish

these services. For instance, Amazon AWS [5] reverse DNS would point to “*.ama-

zonaws.com”. However, reverse DNS over Amazon CloudFront [4] (Amazon CDN

service) IPs would point to “*.cloudfront.net”. See Table 2 for the reverse DNS in-

formation for each CDN that publishes reverse DNS information.

28

CDN provider Reverse DNS

Amazon
*.amazonaws.com
*.cloudfront.net

KeyCDN *.proinity.net
CDN77 *.cdn77.com
BunnyCDN *.b-cdn.com
Hostry *.hostry.com
Akamai *.akamaitechnologies.com

Google
*.1e100.net
*.googleusercontent.com

FastCDN tech *.yourhostingaccount.com
StackPath *.hwcdn.net

Table 2: Reverse DNS address for CDNs.

• HTTP headers. Guo et al. [28] mentioned that CDN providers would include distin-

guishable headers in the HTTP connection. Although not all the CDN providers in-

clude these headers, we investigate known CDNs and check if any CDN still includes

these headers. Notably, some mentioned headers in [28] are not valid anymore. In

some cases, CDNs have completely removed the headers because of security reasons.

For example, Fastly [27] removed the “Server” header since it was leaking informa-

tion about the server software and its version, which could aid an attacker [9]. In

our scan, we observe that some websites and CDNs are still displaying the version of

their server software, including their OpenSSL version.3 Table 3 shows the unique

headers that we found for the investigated CDNs. Note that if a website is using a

CDN, it does not always need to use the CDN unique header. Moreover, some CDNs

3We observed that 17,162 websites are still displaying security-sensitive information including the version
of their server and OpenSSL. For example, “cafebazaar.ir” a popular website in Iran that is an application store
for Android devices, is using Nginx version 1.15.6. For few websites, the OpenSSL version is also visible
in their HTTP headers. We recommend that these websites and CDNs follow other CDNs like Fastly and
remove the version of sensitive software and libraries such as OpenSSL.

29

such as Fastly, let users modify the headers or choose to use/not use them [26].

CDN provider HTTP response (H: header)
Akamai H: “Server: AkamaiGHost”
Cloudflare H: “Server: Cloudflare”
ArvanCloud H: “Server: ArvanCloud”
StackPath H: “X-hw”

Incapsula
H: “X-Iinfo”
H: “X-CDN: Incapsula”

KeyCDN H: “Server: keycdn-engine”
Amazon H: “Server: CloudFront”

Alibaba
H: “eagleeye-traceid”
H: “Alisite-Track”

CDN77 H: “Server: CDN77-Turbo”
BunnyCDN H: “Server: BunnyCDN-*”
Medianova H: “Server: MNCDN-*”
ChinaCache H: “Powered-By-ChinaCache”
Baidu H: “Server: yunjiasu-nginx”
Baishan cloud H: “X-Ser”
Netlify H: “X-NF-Request-ID”

Yottaa
H: “X-Yottaa-Optimizations”
H: “X-Yottaa-Metrics”

Beluga
CDN

H: “BelugaCDN”
H: “X-Beluga-Trace”

Table 3: Unique HTTP headers for CDNs.

• CNAME. CDN providers use the CNAME field to redirect users from the original do-

main to their assigned subdomains. Since most CDN providers support the CNAME

as a request routing mechanism [30], we use the website’s DNS server to check if it

is presenting a known CDN CNAME. Although some CDN providers announce their

CNAME subdomain, to the best of our knowledge, there is no centralized dataset to

find the CNAME for CDNs. We found these domains by reading CDN documen-

tations, searching online, and manually inspecting the most referred to CNAMEs in

30

our scan. See Table 4 for the CNAMEs that we use in our front-end measurement.

CDN provider CNAME
Cloudflare cdn.cloudflare.net.
Amazon cloudfront.net
KeyCDN kxcdn.com kvcdn.com
CDN77 cdn77.com
BunnyCDN bunnycdn.com.
Microsoft Azure azureedge.net azurefd.net. azure.net
Fastly fastly.net map.fastly.net global.prod.fastly.net
Medianova mncdn.com
ArvanCloud arvancdn.com
StackPath hwcdn.net. stackpathcdn.com.
Azion ha.azioncdn.net

Akamai
akamai.net akamaiedge.net edgesuite.net
akamaized.net

Google l.google.com.
Incapsula incapdns.net
Alibaba alibaba.com alicdn.com
FastCDN tech fastcdn.com fastweb.com.cn
ChinaCache chinacache.com cnccgslb.net
Beluga CDN belugacdn.com. nucdn.net
Cdnetworks gccdn.net cdnetworks.net cdngc.net
Verzion alphacdn.net

Baishancloud
baishancloud.com trpcdn.net qingcdn.com
bsclink.cn bsgslb.cn

Netlify netlify.com netlifyglobalcdn.com
Yottaa yottaa.net
Baidu yunjiasu-cdn.net

Table 4: Unique CNAME for CDNs.

• TLS certificates. Prior work [28, 36] used certificates to conduct CDN measurement

studies. However, when the work in [36] was conducted (2014), SNI was not used.

Cangialosi et al. [13] also mentioned that the SNI extension was not popular at the

time that they conducted their study (2016); for instance, CDN providers like Akamai

have just started offering SNI after Cangialosi et al. finished their scan. In contrast,

31

nowadays, most known CDN providers support SNI. For example, Cloudflare would

issue an SNI certificate for their users free of charge. Therefore, we did not use TLS

certificates as a feature for our front-end scanning.

32

Chapter 4

Results

In this chapter, we first discuss the result of the back-end TLS-vulnerabilities detected by

our framework. Then, we discuss our front-end scanning results and approximate CDN

marked share for Alexa top 1M.

4.1 Possible TLS-vulnerabilities (back-end connection)

In our back-end investigation, we deploy our website on as many CDNs as it was possible

for us. Some CDN providers have free-trial or open to individual users at a reasonable

price. However, some CDN providers (such as Akamai [3] and Imperva [32]) only sup-

port enterprise clients. Therefore, we investigate the back-end communication of 14 CDN

providers that were affordable for us. Table 6 and Table 5 summarize our results. Below

we categorize our findings based on the root causes.

33

4.1.1 Lack of origin server certificate validation

All of the tested CDNs have at least one shortcoming regarding the validation of origin

server certificates (Table 5). The lack of certificate validation can be further categorized as

not performing the basic certificate validations such as not validating the CN field or the CA

that issued the certificate, and not performing the revocation check. 7 CDNs are completely

missing the certificate validation process of the origin server’s certificate in their back-end

communication. Since these CDNs do not check the origin certificate, the attackers only

need to redirect the traffic to their server instead of the origin, and successfully impersonate

the origin using any certificate. Azure and StackPath perform inadequate validation on the

origin server certificate. Azure validates the origin server’s certificate issuer, expiration,

and presents an error when the origin server’s certificate is invalid. However, it does not

validate the CN (Common Name) field and revocation status for the origin server certificate.

Thus, the most straightforward approach for the attackers to perform the MitM attack is

to impersonate the origin server with a valid certificate issued for an attacker-controlled

domain.

StackPath recently implemented a certificate validation feature for the origin server

(missing during our initial test in November 2019). In StackPath’s documentation [38, 42],

it is explicitly mentioned that if this feature is enabled, the CDN would not accept the

certificates issued from untrusted CAs or that have expired. Nonetheless, we test StackPath

validation (when the origin certificate validation feature was enabled) with CA that we

create (not a valid CA) and StackPath accepted the invalid certificate. We perform the

same test with an expired certificate, which was also accepted. Apparently, StackPath’s

34

certificate validation feature only stops self-signed certificates.

Cloudflare, Amazon, Fastly, CDN77, BunnyCDN do not perform the revocation checks.

In particular, Cloudflare mentioned that they would validate the revocation status [21];

however, we found that, even at the most secure level (that validates the origin certificate),

Cloudflare accepts a revoked certificate.

CDN provider Basic certificate Revocation Comments
validation validation

Cloudflare ✗ Validating the origin is an option
Amazon ✗

KeyCDN ✗

CDN77 ✗

BunnyCDN ✗ Validating the origin is an option
Hostry ✗

Microsoft Azure ✗ ✗ Does not validate the CN
Fastly ✗ Validating the origin is an option
Medianova ✗

ArvanCloud ✗

CDNSun ✗

G-Core ✗

StackPath ✗ ✗ Validating the origin is an option and it
will only stop the self-signed certificates

Azion ✗

Table 5: Summary of origin certificate validation of CDNs (back-end communication).
Notably, if the CDN does perform the basic certificate validation, we did not present the
revocation test result since the attacker can perform the MitM attack in a simpler way (using
the lack of basic certificate validation). ✗indicates that the CDN does not properly perform
the validation.

4.1.2 Virtual upgrade and weak security parameters

We expected that CDN providers only support strong security parameters and avoid using

security parameters that modern browsers do not support. The weak security parameters

can be further categorized into broken ciphers (and corresponding hashing algorithms), and

35

weak configurations of key exchange algorithms (explained below). Notably, since these

known TLS-vulnerabilities are in the back-end communication and the users’ browser is not

involved in this communication, browsers will not warn users about these weak/insecure

choices.

• Broken ciphers. Amazon, Fastly, Medianova support RC4 as a cipher which is out-

dated, and modern browsers terminate any RC4 based connection (not as a warning).

Amazon also supports the deprecated MD5 hash algorithm. Moreover, Amazon,

Fastly, Medianova and Cloudflare support 3DES which is also deemed insecure [11].

• Insecure key exchange configuration. TLS uses DH (or other key exchange proto-

cols) to establish the shared secret. Other secrets and keys are driven from the shared

secret. 9/14 CDNs support weak DH configuration. DH over 1024-bit prime moduli

is vulnerable to the Logjam attack [2, 46]. Nowadays browsers terminate the con-

nection that uses 1024-bit or 2048-bit DH (not as a warning). 8 out of 9 vulnerable

CDNs (except CDN77) support 1024-bit DH as well as 2048-bit.

4.1.3 Vulnerable default settings and options

5/14 CDNs have a vulnerable default setting. By default, Amazon CloudFront and G-Core

use HTTP connections in their back-end instead of HTTPS. BunnyCDN, StackPath, and

Cloudflare do not validate the origin server’s certificate by default, rather origin certificate

validation is an option that can be enabled. In particular, Cloudflare documentation men-

tions that if the origin has a valid certificate, the website should choose either the option

36

to use HTTPS without validating the certificate (default configuration) or use HTTPS that

validates the origin certificate [18]. However, since the origin has a valid certificate, not

validating the origin certificate does not align with the best security practices. Concerning

the vulnerable options, we found that Amazon CloudFront provides the option to support

SSL3 for the origin server (not enabled by default) which is outdated, vulnerable, and not

supported by the browsers. Notably, the SSL3 option was not enabled for any of our tests

on Amazon CloudFront.

4.2 CDN market share (from front-end connection)

To identify the websites that are potentially affected by our back-end findings, we identify

the websites that are using vulnerable CDNs. We have extracted the features mentioned in

Section 3.2 from 804,013 websites in the Alexa top million that were available to us. In our

scan, we could not reach 23,345 websites. The main reason is our 60-second timeout; to ac-

celerate our scanning process, we set a timeout for 60 seconds, and if we cannot extract all

the features in less than 60 seconds, we flag the website as unreachable. In addition, some

websites block automated tools. From the reachable websites that we analyzed (780,668),

we found that approximately 34% use known CDNs. Cloudflare is the most popular CDN,

which controls 152,070 websites (approximately 20%), followed by Amazon (58,495 web-

sites). Notably, some CDNs such as Amazon and Google, provide both hosting services

and CDN. For Amazon, we can distinguish their CDN from their other services. 10,202

websites use CloudFront (Amazon CDN) and, 48,293 websites use AWS. However, for

37

Google, we cannot distinguish their services from each other. Table 7 shows the number of

websites for each CDN. See Table 8 for the websites that use hosting providers. Figure 3

displays the estimated market share for the websites that are using known CDNs.

Figure 3: Estimated market share of CDNs. If cloud providers offer both CDN and hosting
services, we present the total amount in this figure.

4.2.1 CNAME as request routing mechanism

CNAME is one of the request routing mechanisms that CDN providers use to redirect users

to their selected edge server. The limitation for this request routing mechanism might differ

for each CDN provider. For example, Cloudflare mentioned two limitations for CNAME

in their documentation. First, only delegated subdomain records would be protected from

attacks against DNS infrastructure. Secondly, due to limitations in DNS specification, the

root domain cannot use Cloudflare services [19]. In total, we found over 208,000 websites

38

Figure 4: Usage of CNAME in CDNs

that are using a CDN. We removed the hosting providers to have a more accurate number.

Moreover, we eliminate Google since we cannot distinguish Google CDN from its other

services. From the remaining 27% of the websites, approximately 20% (57921) of websites

are using CNAME as their request routing mechanism. This number can change signifi-

cantly from one CDN to another. For example, only 5% of the websites using Cloudflare

employ CNAME (7482 from 152070 websites). On the other hand, approximately 80%

of the websites that are using CloudFront have the corresponding CNAME in their DNS.

We believe the reason for this discrepancy is the available options and default settings for

a given CDN. For example, by default, Cloudflare provides the option of using Cloudflare

DNS as the request routing mechanism even for their free accounts. However, most of

the CDNs do not support DNS as a request routing mechanism [30]. Figure 4 shows the

number of websites that use CNAME as their request routing mechanism.

39

CDN Back-end Back-end Back-end Back-end Front-end TLS Default setting and
vulnerable support of support of TLS version version (what other problems
DH weak ciphers weak hash end-users see)

Cloudflare 3DES SHA-1 Max TLS 1.3 TLS 1.3 Back-end: default does not
Min TLS 1.0 validate the origin certificate

Amazon RC4 SHA-1 Max TLS 1.3 TLS 1.3 Back-end: default is
3DES MD5 Min SSL 3.0 HTTP (not HTTPS)

KeyCDN 1024 SHA-1 Max TLS 1.2 TLS 1.3
2048 Min TLS 1.0

CDN77 2048 SHA-1 Max TLS 1.2 TLS 1.3
Min TLS 1.0

BunnyCDN 1024 SHA-1 Max TLS 1.3 TLS 1.3
2048 Min TLS 1.0

Hostry 1024 SHA-1 Max TLS 1.2 TLS 1.2
2048 Min TLS 1.0

Microsoft SHA-1 Max TLS 1.2 TLS 1.2
Azure Min TLS 1.0
Fastly 1024 RC4, SHA-1 Max TLS 1.2 TLS 1.2

2048 3DES Min TLS 1.0
Medianova 1024 RC4 SHA-1 Max TLS 1.2 TLS 1.3

2048 3DES Min TLS 1.0
ArvanCloud 1024 SHA-1 Max TLS 1.2 TLS 1.3

2048 Min TLS 1.0
CDNSun 1024 SHA-1 Max TLS 1.2 TLS 1.2

2048 Min TLS 1.0
G-Core Not tested SHA-1 Max TLS 1.2 TLS 1.2 Back-end: default is
CDN Min TLS 1.0 HTTP (not HTTPS)
StackPath 1024 SHA-1 Max TLS 1.2 TLS 1.3

2048 Min TLS 1.0
Azion Not tested SHA-1 Max TLS 1.3 TLS 1.3 Back-end default: change

Min TLS 1.0 depending front-end HTTP(S).
Front-end: offers no option
to disable HTTP

Table 6: Summary of weak security parameters that CDNs support in their back-end com-
munication as well as insecure default settings. G-Core and Azion CDN were not available
to us at the time of our DH-related experiment. Moreover, Azion default for the back-end
connection is to change the back-end HTTP(S) according to the front-end HTTP(S). No-
tably, to check the maximum TLS version of the front-end connection, we use the client
that supports TLS 1.3. Therefore, the TLS version depends on the maximum TLS version
that the CDN server supports.

40

CDN # Websites CDN # Websites
provider using the CDN provider using the CDN
Cloudflare 152070 BunnyCDN 118
ArvanCloud 1041 Azion 78
Google 79282 Medianova 13
Azure 2150 FastCDN 305
Fastly 1789 Chinacache 150
Akamai 14358 Belugacdn 38
StackPath 1077 Baidu 319
Incapsula 6511 Cdnetworks 89
Keycdn 107 Baishancloud 96

Amazon
58495 Total Netlify 2756
10202 CDN
48293 AWS

OVH 2469 Yottaa 184
Alibaba 949 Aiscaler 21
CDN77 150 Chinanetcenter 84

Table 7: The number of websites using known CDNs in Alexa top 1 million.

Hosting # Websites Hosting # Websites
provider using it provider using it
myshopify 26208 your-server 10911
sucuri 3284 linode 4375
secureserver 19120 hosting 4498
default-host 3539 web-hosting 5660
beget 7532 unifiedlayer 8739
timeweb 4478 bluehost 4721
webhostbox 3716

Table 8: Number of websites using popular hosting provider.

41

Chapter 5

Discussion

In this chapter, we first discuss the practical implications and the likelihood of MitM attacks

due to our findings. Then, we discuss the possible mitigation and limitation of our findings.

Finally, we talk about our responsible disclosure process.

5.1 Practical implications

Since the back-end connection is hidden from the users and cannot be validated by browsers,

the users are unaware of the risk that they are taking (in the back-end connection). For ex-

ample, we configure the Amazon CDN (CloudFront) to use a subdomain that only supports

RC4 with MD5 as the origin over TLS 1.0. Afterwards, when we connect to the web-

site through CDN, the browser shows AES-128-GCM over TLS 1.3. These discrepancies

in the front-end and back-end communication are hidden from the end-users. Therefore,

the end-users are unaware of the insecure back-end connection. Likewise, the CDN can

42

be configured to use HTTPS in the front-end and HTTP in the back-end communication.

Similarly, the end-users will be unaware of plaintext transmission of data since the browser

displays the lock icon without any warning. The CDNs should expose the back-end known

TLS-vulnerabilities to the end-users to make them aware of the risk that they are taking.

Nevertheless, none of the investigated CDNs supports such transparency for all the known

TLS-vulnerabilities (similar to a modern browser).

Except for certificate-related vulnerabilities, other known TLS-vulnerabilities can be

avoided by properly configuring the security options given in a CDN account and the origin

server; see Table 9. Note that we cannot determine how many origins indeed use secure

configurations as this will require access to their CDN/origin configurations.

Root cause #Websites CDN providers Fixable by origins
Weak DH 4,295 KeyCDN, CDN77, BunnyCDN, Yes

Hostry, Fastly, Medianova, CDNSun ,
AravanCloud , StackPath

Weak ciphers 164,074 Cloudflare, Amazon, Fastly, Medianova Yes
Insecure defaults 162,350 Cloudflare, Amazon, G-Core CDN, Azion Yes
Incomplete certificate 168,795 All the investigated CDNs No
validation

Table 9: The number of websites with possible vulnerable configurations depending on
different root causes. Notably, from the 168,795 potentially vulnerable websites (due to
certificate related TLS-vulnerabilities), 4,466 websites use CDNs that do not perform the
basic certificate validation (the rest lack the revocation check).

Note that regardless of the origin/CDN configurations, the websites using these CDNs

will be vulnerable to MitM attacks. Also, for all the investigated CDNs, in case of an

option regarding the back-end connection (such as origin certificate validation), we use

the most secure option available. In other words, we only report the number of websites

that are vulnerable even if the website is configured with the most secure configuration. For

43

example, the websites that are using StackPath can configure the CDN to validate the origin

server certificate. However, even when this option is enabled, StackPath does not correctly

perform the certificate validation (e.g., StackPath does not validate the CA that issued the

certificate). Likewise, websites that are using Cloudflare can use the most secure level

available for the back-end connection; however, Cloudflare does not validate the revocation

status of the origin (although in their documentation, Cloudflare mentioned that they check

for revocation [21]). Therefore, regardless of the origin/CDN configurations, the back-end

connection remains vulnerable.

In total, we identified 168,795 websites in Alexa top million that are potentially vul-

nerable to MitM attacks; note that, the investigated CDNs control many more websites.

Considering the 9/14 CDNs that do not perform the basic certificate validation, 4466 Alexa

top-1M websites are possibly vulnerable to MitM attacks. Compromising these 4466 web-

sites is simpler for the attacker since the CDN that these websites use does not properly

perform basic certificate validation. The most popular CDN that does not validate the ori-

gin server’s certificate is Microsoft Azure. Our result shows that in Alexa top million, 2150

websites use the Azure CDN, which is followed by StackPath (1077 sites) and ArvanCloud

(1041 sites). In terms of failing to check revocation status of the origin certificate, 5 CDNs

(Cloudflare, Amazon, Fastly, BunnyCDN, CDN77) control 164,329 websites in Alexa top

1 million. Table 10 shows the 10 websites using CDNs that do not perform the basic cer-

tificate validation.

To further illustrate how many websites would be compromised due to lack of origin

certificate validation and the impact on the current web ecosystem, we assume that there

44

Alexa rank Website CDN
413 azure.com Microsoft Azure
610 ultimate-guitar.com StackPath
670 theepochtimes.com StackPath
713 ca.gov Microsoft Azure
737 mehrnews.com ArvanCloud
927 magazineluiza.com.br Azion
981 windowsazure.com Microsoft Azure
1189 yenisafak.com Medianova
1218 minecraft.net Microsoft Azure
1330 isna.ir ArvanCloud

Table 10: Top 10 websites using CDNs that do not perform the basic certificate validation
(in the back-end communication).

is a powerful attacker that can redirect the back-end communication for any website which

uses a vulnerable CDN provider. We then measure the effects based on the CDN and web-

sites that use the CDN. In Figure 5, the number of CDNs is on the horizontal axis, whereas

the percentage of websites using vulnerable CDNs (in Alexa top 1 million) is on the vertical

axis. Our attacker can choose to redirect any back-end connection for a vulnerable CDN

to maximize the number of compromised websites. Our results indicate that a significant

number of the websites currently reside on a very small number of CDNs (as a previous

study confirmed [13]). By redirecting the back-end communication for websites that use

Cloudflare, the attacker compromises more than 80% of the websites that are using vul-

nerable CDN. Thus, if the attacker can find a way to redirect the back-end communication

of the vulnerable CDNs, the result will be catastrophic. Notably, if the CDNs validate the

origin certificate, the redirection of the back-end communication will not have any effect.

45

Figure 5: Vulnerable back-end connection based on the CDN and their corresponding web-
sites. The blue line is Alexa’s top 804K websites (that was accessible to us in Alexa top
million).

5.2 Likelihood of MitM attacks

Previous studies showed that the number of IPs that a CDN provider uses for connecting

to the origin server is limited [28, 29]. Even when the CDN provider owns a significant

number of ingress IPs, the CDN uses a small set of IPs to connect to the origin server. For

example, Guo et al. [29] identified over 490,000 ingress IPs for Cloudflare; nevertheless,

they only identified 242 egress IPs for the same CDN. Additionally, for most CDNs, the

egress IPs are known since the origin server needs to whitelist the egress IPs in its firewall.

If egress IPs are not known for the CDN, the attacker can obtain the IPs by doing the same

experiment as in [29]. A limited number of known egress IPs will reduce the number of

possible network paths that an attacker needs to consider to be an on-path attacker between

46

a CDN and a target origin (or any origin server connected to a vulnerable CDN).

Figure 6: The on-path attacker on the most assigned IP path to the origin server.

Guo et al. [29] also calculated the occurrence ratio (IP-churning) for each CDN provider

during the 24 hours of their experiment. This ratio shows the frequency of repeatedly

assigning the same egress IP for a CDN provider. Depending on the CDN provider, the

occurrence ratio changes significantly. For example, MaxCDN uses only one egress IP for

96.32% of the requests [29]. Although other CDNs assign the egress IPs more evenly and

randomly (less than 10% for each top assigned egress IP), by identifying the top assigned

egress IPs for the CDN provider, the attacker could be on the communication’s path for

a significant amount of the back-end communication. Figure 6 shows an overview of an

on-path attacker performing a MitM attack on the most assigned IP path to the origin.

47

In addition, nowadays, many CDNs support the origin shield feature [14]. The CDN

customer can use the origin shield option which is an extra layer of cache between the

CDN and the origin. On one hand, the origin shield provides a better cache hit ratio, better

network performance and reduce origin load [6]. On the other hand, since the origin shield

is the only CDN server that connects to the origin, it can increase the chance of the on-path

attacker. Generally, even a powerful attacker cannot perform a MitM attack or DoS attack

on CDN-powered websites, partly due to the geo-distributed nature of high-performance

CDN servers. However, since the number of egress IPs are limited (especially when the

origin shield feature is enabled), the attacker can perform these attacks in the back-end

communication by rerouting the connection to the attacker-controlled server.

5.2.1 Possible attack scenarios

Though exploiting the back-end known TLS-vulnerabilities as the on-path attacker is not

as straightforward as the classic coffee shop attacker, some scenarios put few organizations

at an advantage. For example, the malicious ISP or the government-sponsored attacker is

always on the path (obviously when the origin is in their network/country). The malicious

ISP/government can simply perform the MitM attack on the connection that both end-

users and website owners believe is protected with HTTPS. Moreover, the end-user, origin

owner or, CDN provider do not have any method to detect this attack. To the best of our

knowledge, there is no public report about an ISP/government abusing these known TLS-

vulnerabilities. While ISP/government attackers are the most simple scenario since they

would always be on-path, attackers are not limited to ISP/government. Attackers can use

48

any method to redirect the back-end connection (by compromising an on-path router, proxy,

middlebox, etc). Furthermore, researchers show that many Autonomous Systems (AS) do

not perform IP spoofing validations thoroughly; for example, 66% of the ASes did not filter

the incoming packets that claimed to be within the AS network [37].

Researchers used the BGP hijacking method to redirect the traffic and bypass the CA

validation for the issuance of a certificate [12]. In 2018, the attackers used the same method

and stole over $150,000 by redirecting the Amazon DNS (Route53) for MyEtherWallet (an

Ethereum wallet). In this attack, the attackers redirected the front-end connection and

used a self-signed certificate [43]. It would be more destructive if the attacker attempted

the attack on the back-end communication (while the CDN does not verify certificates)

since users’ browsers would not display any warning. There are many examples of BGP

hijacking attacks [15, 16, 24]. More specifically, previous researchers [24] shows how

China Telecom uses 10 PoPs in North America (8 in the US and 2 in Canada) owned by

the company to perform BGP hijacking attacks on the domestic US and cross-US traffic. It

also mentioned various more specific examples that China Telecom successfully performed

the BGP hijacking for long periods. While the authors mentioned DROWN and Logjam

attacks are possible for the encrypted traffics, the attacker can gain much more, using our

findings.

Another attack that seems very relevant to our findings happened in 2020. Rostelecom

(Russia’s state-owned telecommunications provider) redirected the traffic that was meant

for more than 200 CDNs and cloud providers [16].Notably, this was not the first time that

Rostelecom was involved in BGP hijacking attacks; for example, they performed the same

49

attack in 2017 on some of the world’s largest financial entities such as MasterCard, Visa,

Fortis, Alfa-Bank. Interestingly, the list contains many of the CDNs that we found vulnera-

ble. For example, popular CDNs such as Amazon, Akamai, Cloudflare, Fastly, or regional

CDNs such as AravanCloud are on the list. While researchers mentioned that metadata for

websites such as Facebook can be useful for the attackers (especially before the US elec-

tion), using our findings, the attack can be much more devastating. The on-path attacker

can perform the MitM attack (for the certificate-related TLS-vulnerabilities) or use the in-

secure back-end configuration (such as plaintext data in the back-end). Consequently, the

attacker can observe the communication, such as the usernames and passwords in plain-

text. The attacker can also use this information for many other purposes which are out of

the scope of our research.

Researchers also use BGP hijacking to redirect the traffic and bypass the CA validation

for the issuance of a certificate. Therefore, they were able to issue a certificate without

owning the domain [12]. The same approach (BGP highjacking) can be used to redirect

traffic and carry out the MitM attack for back-end communication. Moreover, the malicious

ISP/government can easily redirect the traffic and perform the MitM attack. Guo et al. [29]

show that some of the CDNs that they investigate change their egress IP when a connection

attempt is not successful (in the back-end communication). However, CDNs cannot detect

a successfully launched MitM attack due to their lack of origin certificate validation. Thus,

CDNs will continue using the same allocated IP address.

50

5.3 Mitigation

Websites are intended to be used by the end-users, and CDNs are an extra caching layer

between the end-users and origin. Connection security to an intended HTTPS website is

primarily evaluated by the user’s browser; users are expected (and nudged in the UI) to

stay away from the sites not satisfying modern browsers’ security requirements. However,

for CDN-powered HTTPS websites, browsers can only validate the front-end connection,

unless CDN-to-origin connection security issues are exposed by the CDN. To mitigate this

problem, CDNs can adopt the same security policies as modern browsers4 for the back-end

connection; thus, all the known TLS-vulnerabilities as exposed by our test framework can

be easily mitigated. Origin administrators should also avoid using weak cipher-suites, key

exchange (on their TLS server), and insecure default settings (on their CDN account). How-

ever, they cannot do anything about insecurity introduced by CDN administrators, such as

not validating origin certificates properly. Note that, incentives for improving security prac-

tices are misaligned here, which requires time and effort from the CDN administrators to

implement proper security practices and convince site operators to do their part; however,

strict security choices may cause CDNs to lose some of their customers who could switch

to a less strict CDN. On the other hand, better security choices directly benefit website users

and owners, who have no control over CDNs’ choices of important security parameters.

For business purposes, CDNs may want to support all customers, including web/TLS

servers that are not at par with modern standards (i.e., legacy customers). CDN operators

4See here for the CA/Browser Forum’s baseline requirements: https://cabforum.org/baseline-
requirements-documents/

51

https://cabforum.org/baseline-requirements-documents/
https://cabforum.org/baseline-requirements-documents/

also stressed this need during our disclosure process. However, we see no reason to sup-

port origins with invalid certificates, including the self-signed ones, since certificate-related

TLS-vulnerabilities do not conflict with legacy customers. For TLS versions and cipher-

suites, CDNs can be more accommodating (e.g., allowing 3DES, which is deemed to be

weak, but exploiting it requires significant effort). For clearly exploitable configurations

(e.g., the use of RC4, SHA-1), users should be displayed an error/warning page, which is

actually done by several CDNs in our test set; e.g., Cloudflare generates an error page if the

origin uses RC4, but Amazon transparently allows RC4 in the back-end connection. We

believe that such error pages will eventually push the origin web admins to adopt current

security best-practices. The choice between the warning and error depends on the CDN

policies. Nevertheless, the CDN should expose insecure back-end to the end-users. Hiding

dangerous TLS misconfigurations and bad practices may only give a false sense of security

to end-users, while extending the window of opportunities for attackers. More importantly,

allowing a dangerous configuration such as not validating the origin certificate to accom-

modate a small minority of legacy customers, may actually make other websites that fully

follow current security best practices, vulnerable to attacks due to their use of a CDN.

5.4 Limitations

Although we used the result of the front-end measurements to find new CDNs (see Sec-

tion 3.2), there may be regional CDNs that we missed. Moreover, as mentioned (see Sec-

tion 4.1), some CDNs only work with enterprise clients and we are not able to perform our

52

tests on their back-end communication.

Considering our front-end scan, while extracting all the features for the websites to

identify the CDNs, we realize that there are few discrepancies in our dataset. For example,

the website “www.duo-wei.cn” has a CNAME “duowei12.azureedge.net” which points to

Azure CDN. After manually analyzing the data in DNS for the domain, we found that

“duowei12.azureedge.net” has a CNAME that points to “a1879.dscw14.akamai.net”, which

points to Akamai. Also, when we perform a reverse DNS query for the IP address, it points

to Akamai. Therefore, in our dataset, the extracted features point to different CDNs and we

categorize this domain as a website that is using both Azure (based on the first CNAME)

and Akamai (when we look at reverse DNS). As a result of this discrepancy, we took a

deeper look at Azure CDN. We realize that users in Azure have the option to choose their

“pricing tier” from Microsoft, Akamai, and Verizon. We also detect some websites that

use multiple CDNs. In this case, we count one of them (the one that we get redirected to).

Nevertheless, if one of the multiple CDNs that the website uses is vulnerable, the attacker

can perform a MitM attack on the vulnerable CDN. Thus, in our results, for each domain,

we first determine if we can categorize the domain with HTTP headers. If not, we move

to CNAME, and finally, we check the reverse DNS field. Due to this approach, we would

categorize “www.duo-wei.cn” as a website that is using Azure, and not Akamai.

53

5.5 Responsible disclosure

We performed our evaluation between November 2019 and February 2021. We responsi-

bly notified the vulnerable CDNs during our experiments. We could reach only 9/14 CDN

security teams (the general support teams in other CDNs did not respond or connect us

with their security teams). Fastly confirmed our findings relating to certificate validation

and informed us that they would start working on remediation of the TLS-vulnerabilities.

However, for the weak cipher suites, according to Fastly, website admins are responsible

for the security parameters as site admins can control the acceptable ciphers and DH groups

on their origin server. Microsoft Security Response Center (MSRC) confirmed the findings

about the lack of Azure certificate validation. However, they mentioned that since exploit-

ing the TLS-vulnerability needs the attacker to route the traffic to the attacker-controlled

website, it “does not meet the bar for servicing by MSRC”. However, the attacker only

needs to be on-path (e.g., an ISP between the CDN and origin), and requires no other ex-

ploits. StackPath security informed us that they were aware of the TLS-vulnerabilities for

the origin validation through their support channel. They also told us that their mitiga-

tion will be implemented around mid-March 2021. AWS Security team confirmed that the

revocation status of the origin certificate is not performed real-time to “maintain latency

and availability expectations for CloudFront customers.” Regarding the support for MD5

and RC4, they also (similar to Fastly) expect their customers to disable such weak/insecure

options at the origin server. Cloudflare (via HackerOne) confirmed the missing revocation

check, but this threat is out of scope for them. Medianova escalated our findings to their

54

security team; however, we did not hear anything about their fixes. G-Core did not con-

sider our results as TLS-vulnerability and mentioned that “Cloudflare has the same issue”

(which is not accurate). Hostry passed our report to their team. However, they mentioned

that their CDN service has been relocated and the process is not in their control. Azion

mentioned that the issue is “known in the CDN space”. They also mentioned that their

enterprise customers can use certificate pinning to avoid MitM attacks.

55

Chapter 6

Conclusion and future work

In this thesis, we present a TLS security analysis framework for testing the communication

between a CDN provider and a origin server. We unveil that none of the investigated CDNs

properly validate the origin server certificate, possibly subjecting the websites powered

by these CDNs to man-in-the-middle attacks in their back-end (CDN-to-Origin) connec-

tion. Moreover, we monitor the back-end connection for any weak security parameters

including ciphers and the key exchange configurations. We found that 3 CDN providers

support ciphers such as RC4. We also found 9 CDNs support insecure DH key exchange

that browsers do not support. Furthermore, we realize that 5 CDNs have insecure default

settings including Cloudflare (the most popular CDN). We also conducted a measurement

study on the front-end connection to measure the number of potentially vulnerable web-

sites. We showed over 20% of Alexa 1M websites are using a vulnerable CDN. Therefore,

all the websites that use the vulnerable CDNs (all the investigated CDNs) are potentially

vulnerable in their back-end communication. Moreover, the users are oblivious to insecure

56

back-end connections since their browsers are not involved in the back-end communication.

Thus, browsers will not present any warning or terminate such weak/insecure connections;

this may mislead website administrators who might also test their CDN-protected website

through a browser. Our test framework can help identify these TLS/HTTPS weaknesses

that are hidden from browsers, and help CDN providers and website administrators to take

appropriate steps to mitigate these serious security issues.

For future work, our framework can be used to evaluate the security of the back-end

connection of the CDNs that were not available to us. Our framework can also be im-

proved by including other known TLS attacks (such as FREAK [10], POODLE [39] and

downgrading attacks). In addition, our framework can be improved to check the CDNs that

support the client certificate (for mutual authentication) and send a client certificate from

our origin. We can also use the Certificate Transparency (CT) logs and compare the cer-

tificate that the end-users can see with the active certificates of a given domain. Therefore,

we can detect if they are sharing their certificate directly with the CDN or not. Front-end

scanning can also be improved by adding new features such as AS numbers.

57

Bibliography

[1] Wireshark Foundation . Wireshark · Go Deep. https://www.wireshark.org/, 2021.

[2] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman,

N. Heninger, D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow,

S. Zanella-Béguelin, and P. Zimmermann. Imperfect Forward Secrecy: How Diffie-

Hellman Fails in Practice. In Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security, CCS ’15, page 5–17, New York, NY, USA,

2015. Association for Computing Machinery.

[3] Akamai Technologies. Security, cloud delivery. https://www.akamai.com, 2021.

[4] Amazon Web Services, Inc. Amazon cloudfront. https://aws.amazon.com/

cloudfront/, 2021.

[5] Amazon Web Services, Inc. Amazon web services (aws) - cloud computing services.

https://aws.amazon.com/, 2021.

[6] Amazon Web Services, Inc. Using Amazon CloudFront Origin Shield. https://docs.

58

https://www.wireshark.org/
https://www.akamai.com
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/origin-shield.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/origin-shield.html

aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/origin-shield.html,

2021.

[7] Badssl.com. Badssl.com. https://badssl.com, 2021.

[8] A. Barbir, B. Cain, R. Nair, and O. Spatscheck. Known Content Network (CN)

Request-Routing Mechanisms. RFC 3568, July 2003.

[9] A. Betts. The headers we don’t want. http://www.fastly.com/blog/headers-we-dont-

want, 2018.

[10] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss,

A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue. A Messy State of the Union: Taming

the Composite State Machines of TLS. In 2015 IEEE Symposium on Security and

Privacy, pages 535–552, 2015.

[11] K. Bhargavan and G. Leurent. On the Practical (In-)Security of 64-Bit Block Ci-

phers: Collision Attacks on HTTP over TLS and OpenVPN. In Proceedings of the

2016 ACM SIGSAC Conference on Computer and Communications Security, CCS

’16, page 456–467, New York, NY, USA, 2016. Association for Computing Machin-

ery.

[12] H. Birge-Lee, Y. Sun, A. Edmundson, J. Rexford, and P. Mittal. Bamboozling Certifi-

cate Authorities with BGP. In 27th USENIX Security Symposium (USENIX Security

18), pages 833–849, Baltimore, MD, Aug. 2018. USENIX Association.

59

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/origin-shield.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/origin-shield.html
https://badssl.com
http://www.fastly.com/blog/headers-we-dont-want
http://www.fastly.com/blog/headers-we-dont-want

[13] F. Cangialosi, T. Chung, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove, and C. Wil-

son. Measurement and Analysis of Private Key Sharing in the HTTPS Ecosystem. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-

tions Security, CCS ’16, page 628–640, New York, NY, USA, 2016. Association for

Computing Machinery.

[14] CDN Planet. Origin Shield - CDN Planet. https://www.cdnplanet.com/guides/origin-

shield, 2020.

[15] C. Cimpanu. Google traffic hijacked via tiny Nigerian ISP. https://www.zdnet.com/

article/google-traffic-hijacked-via-tiny-nigerian-isp/, November. 13, 2018 [Online].

[16] C. Cimpanu. Russian telco hijacks internet traffic for Google, AWS, Cloudflare,

and others. https://www.zdnet.com/article/russian-telco-hijacks-internet-traffic-for-

google-aws-cloudflare-and-others/, April. 5, 2020 [Online].

[17] Cisco. Cisco visual networking index: forecast and methodology, 2017-2022. 2017.

[18] Cloudflare, Inc. End-to-end HTTPS with Cloudflare - Part 1: conceptual

overview . https://support.cloudflare.com/hc/en-us/articles/360024787372-End-to-

end-HTTPS-with-Cloudflare-Part-1-conceptual-overview, 2020.

[19] Cloudflare, Inc. Cloudflare Help Center. https://support.cloudflare.com/hc/en-us/

articles/360020348832-Understanding-a-CNAME-Setup, 2021.

[20] Cloudflare, Inc. Cloudflare Workers® . https://workers.cloudflare.com/, 2021.

60

https://www.cdnplanet.com/guides/origin-shield
https://www.cdnplanet.com/guides/origin-shield
https://www.zdnet.com/article/google-traffic-hijacked-via-tiny-nigerian-isp/
https://www.zdnet.com/article/google-traffic-hijacked-via-tiny-nigerian-isp/
https://www.zdnet.com/article/russian-telco-hijacks-internet-traffic-for-google-aws-cloudflare-and-others/
https://www.zdnet.com/article/russian-telco-hijacks-internet-traffic-for-google-aws-cloudflare-and-others/
https://support.cloudflare.com/hc/en-us/articles/360024787372-End-to-end-HTTPS-with-Cloudflare-Part-1-conceptual-overview
https://support.cloudflare.com/hc/en-us/articles/360024787372-End-to-end-HTTPS-with-Cloudflare-Part-1-conceptual-overview
https://support.cloudflare.com/hc/en-us/articles/360020348832-Understanding-a-CNAME-Setup
https://support.cloudflare.com/hc/en-us/articles/360020348832-Understanding-a-CNAME-Setup
https://workers.cloudflare.com/

[21] Cloudflare, Inc. Troubleshooting Cloudflare 5XX Errors. https://support.

cloudflare.com/hc/en-us/articles/115003011431-Troubleshooting-Cloudflare-5XX-

errors#526error, 2021.

[22] Cloudflare, Inc. What is serverless computing? https://www.cloudflare.com/en-ca/

learning/serverless/what-is-serverless/, 2021.

[23] X. d. C. de Carnavalet and P. C. van Oorschot. A survey and analysis of TLS inter-

ception mechanisms and motivations. arXiv preprint arXiv:2010.16388, 2020.

[24] C. Demchak and Y. Shavitt. China’s Maxim – Leave No Access Point Unexploited:

The Hidden Story of China Telecom’s BGP Hijacking. In Military Cyber Affairs: Vol.

3 : Iss. 1 , Article 7., 2018.

[25] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on

Information Theory, 29(2):198–208, 1983.

[26] Fastly, Inc. Adding or Modifying Headers on HTTP Requests and Responses:

Fastly Help Guides. docs.fastly.com/en/guides/adding-or-modifying-headers-on-

http-requests-and-responses, 2018.

[27] Fastly, Inc. The edge cloud platform behind the best of the web. http://www.fastly.

com, 2021.

[28] R. Guo, J. Chen, B. Liu, J. Zhang, C. Zhang, H. Duan, T. Wan, J. Jiang, S. Hao, and

Y. Jia. Abusing CDNs for Fun and Profit: Security Issues in CDNs’ Origin Validation.

61

https://support.cloudflare.com/hc/en-us/articles/115003011431-Troubleshooting-Cloudflare-5XX- errors#526error
https://support.cloudflare.com/hc/en-us/articles/115003011431-Troubleshooting-Cloudflare-5XX- errors#526error
https://support.cloudflare.com/hc/en-us/articles/115003011431-Troubleshooting-Cloudflare-5XX- errors#526error
https://www.cloudflare.com/en-ca/learning/serverless/what-is-serverless/
https://www.cloudflare.com/en-ca/learning/serverless/what-is-serverless/
docs.fastly.com/en/guides/adding-or-modifying-headers-on-http-requests-and-responses
docs.fastly.com/en/guides/adding-or-modifying-headers-on-http-requests-and-responses
http://www.fastly.com
http://www.fastly.com

In 2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS), pages 1–10,

2018.

[29] R. Guo, W. Li, B. Liu, S. Hao, J. Zhang, H. Duan, K. Shen, J. Chen, and Y. Liu. CDN

Judo: Breaking the CDN DoS Protection with Itself. In Network and Distributed

System Security Symposium, 01 2020.

[30] S. Hao, Y. Zhang, H. Wang, and A. Stavrou. End-Users Get Maneuvered: Empirical

Analysis of Redirection Hijacking in Content Delivery Networks. In 27th USENIX

Security Symposium (USENIX Security 18), pages 1129–1145, Baltimore, MD, Aug.

2018. USENIX Association.

[31] S. Herwig, C. Garman, and D. Levin. Achieving Keyless CDNs with Conclaves.

In 29th USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020,

pages 735–751. USENIX Association, 2020.

[32] Imperva, Inc. Cyber Security Leader: Imperva, Inc. https://www.imperva.com, 2021.

[33] L. Jin, S. Hao, H. Wang, and C. Cotton. Unveil the hidden presence: Characterizing

the backend interface of content delivery networks. In 2019 IEEE 27th International

Conference on Network Protocols (ICNP), pages 1–11. IEEE, 2019.

[34] Let’s Encrypt. Revoking certificates. https://letsencrypt.org/docs/revoking/, 2020.

[35] Let’s Encrypt. Free SSL/TLS Certificates. https://letsencrypt.org/, 2021.

[36] J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, and J. Wu. When HTTPS Meets CDN: A

62

https://www.imperva.com
https://letsencrypt.org/docs/revoking/
https://letsencrypt.org/

Case of Authentication in Delegated Service. In 2014 IEEE Symposium on Security

and Privacy, pages 67–82, 2014.

[37] M. Luckie, R. Beverly, R. Koga, K. Keys, J. A. Kroll, and k. claffy. Network Hygiene,

Incentives, and Regulation: Deployment of Source Address Validation in the Internet.

In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-

tions Security, CCS ’19, page 465–480, New York, NY, USA, 2019. Association for

Computing Machinery.

[38] T. M. StackPath Settings: Origin SSL Validation. https://support.stackpath.com/hc/

en-us/articles/360037197792-StackPath-Settings-Origin-SSL-Validation, 2021.

[39] B. Möller, T. Duong, and K. Kotowicz. This POODLE bites: exploiting the SSL 3.0

fallback. Security Advisory, 21:34–58, 2014.

[40] moxie. moxie0/sslsniff. github.com/moxie0/sslsniff., 2019.

[41] OpenSSL Software Foundation. OpenSSL Foundation, Inc. https://www.openssl.org,

2021.

[42] Y. Parasol. Settings: SSL Validation. https://support.stackpath.com/hc/en-us/articles/

360037362652-Settings-SSL-Validation-, 2020.

[43] L. Poinsignon. BGP leaks and cryptocurrencies. https://blog.cloudflare.com/bgp-

leaks-and-crypto-currencies, 2018.

[44] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446,

Aug. 2018.

63

https://support.stackpath.com/hc/en-us/articles/360037197792-StackPath-Settings-Origin-SSL-Validation
https://support.stackpath.com/hc/en-us/articles/360037197792-StackPath-Settings-Origin-SSL-Validation
github.com/moxie0/sslsniff.
https://www.openssl.org
https://support.stackpath.com/hc/en-us/articles/360037362652-Settings-SSL-Validation-
https://support.stackpath.com/hc/en-us/articles/360037362652-Settings-SSL-Validation-
https://blog.cloudflare.com/bgp-leaks-and-crypto-currencies
https://blog.cloudflare.com/bgp-leaks-and-crypto-currencies

[45] L. Waked, M. Mannan, and A. Youssef. The Sorry State of TLS Security in Enterprise

Interception Appliances. Digital Threats: Research and Practice, 1(2), May 2020.

[46] weakdh. Weak Diffie-Hellman and the Logjam Attack. https://weakdh.org/, 2015.

64

https://weakdh.org/

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Overview
	Motivation
	Problem statement
	Contributions
	Thesis organization

	Background
	HTTPS
	Certificate validation
	TLS security primitives

	CDN
	Request-routing mechanism
	CDN security features

	Threat model
	Related work

	Methodology
	Evaluation framework (back-end connection)
	Security parameters
	Validating the origin's certificate
	Default settings and extra options

	Feature extraction (front-end connection)

	Results
	Possible TLS-vulnerabilities (back-end connection)
	Lack of origin server certificate validation
	Virtual upgrade and weak security parameters
	Vulnerable default settings and options

	CDN market share (from front-end connection)
	CNAME as request routing mechanism

	Discussion
	Practical implications
	Likelihood of MitM attacks
	Possible attack scenarios

	Mitigation
	Limitations
	Responsible disclosure

	Conclusion and future work
	Bibliography

