
Malicious Payload Distribution Channels in Domain
Name System

A Thesis in the Concordia Institute for Information Systems Engineering

Presented in Partial Fulfilment of the Requirements
for the Degree of Master of Applied Science in Information Systems Security

at the Concordia Institute for Information Systems Engineering
Concordia University, Montréal, Québec, Canada

Abdullah Mert Kara

December 2013

c© Abdullah Mert Kara 2013



Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Abdullah Mert Kara
Entitled: Malicious Payload Distribution Channels in Domain

Name System

and submitted in partial fulfilment of the requirements for the degree of

Master of Applied Science in Information Systems Security

complies with the regulations of this University and meets the accepted standards
with respect to originality and quality.

Signed by the final examining committee:

Dr. Andrea Schiffauerova Chair

Dr. Lingyu Wang Examiner

Dr. Peter Grogono Examiner

Dr. Mourad Debbabi Supervisor

Dr. Mohammad Mannan Supervisor

Approved
Chair of Department or Graduate Program Director

2013
Christopher Trueman, Ph.D., Dean
Faculty of Engineering and Computer Science



Abstract

Malicious Payload Distribution Channels in Domain Name System

Abdullah Mert Kara

Botmasters are known to use different protocols to hide their activities under the

radar. Throughout the past years, several protocols have been abused and recently

Domain Name System (DNS) also became a target of such malicious activities. In this

dissertation, we analyze the use of DNS as a malicious payload distribution channel.

To the best of our knowledge, this is the first comprehensive analysis of these payload

distribution channels via DNS. We present a system to characterize such channels in

the passive DNS (pDNS) traffic by modeling DNS query and response patterns. Then,

we analyze the Resource Record (RR) activities of these channels to build their DNS

zone profiles. Finally, we detect and assign levels of intensity for payload distribution

channels by using a fuzzy logic theory. Our work is based on an extensive analysis

of malware datasets for one year, and a near real-time feed of pDNS traffic. The

experimental results reveal few long-running hidden domains used by Morto worm

to distribute malicious payloads. We also found that some of these payloads are in

cleartext, without any encoding or encryption. Our experiments on pDNS traffic

indicate that our system can detect these channels regardless of the payload format.

Passive DNS is a useful data source for DNS based research, and it requires to

be stored in a database for historical data analysis, such as the work we present

iii



in this dissertation. Once this database is established, it can be used for any sort

of threat analysis that requires DNS oriented intelligence. Our aim is to create a

scalable pDNS database, that contains potentially valuable security intelligence data.

We present our pDNS database by discussing the database design, implementation

challenges, and the evaluation of the system.

iv



Acknowledgements

As in every successful work, the collaboration and supervision played an important

role for me to reach to this point. Throughout my studies, my supervisors Dr. Mourad

Debbabi and Dr. Mohammad Mannan taught me the important principles of turning

ideas into applications. I would like to take this opportunity to thank them. Also, I

would like to send my sincere thanks to Paul Vixie for his valuable comments.

In Computer Security lab, I have had the chance to work with great people,

and I thank all of them for their friendships. Also, my labmates who were great

companions during this journey; Hamad Binsalleeh, Gaby Dagher, Sahba Sadri. Also,

I thank National Cyber-Forensics & Training Alliance (NCFTA) Canada for providing

facilities for conducting research, this work would not be possible without their active

supports.

The result of studying abroad, my family in Turkey paid the biggest price by me

being physically away from them. This research work would be a minimal payment

for every moment, that I could not be with them. With all my sincere feelings, I

would like to extend my appreciations to my mother Sıttıka, my father Mehmet, my

sister Mehtap, and my brother Mustafa. Also, I truly apologize to my niece İpek

for leaving her without me during these years. Finally, I thank Claris for giving me

support for everything during my studies.

i



Dedicated to my family and Claris . . .

v



Contents

List of Figures ix

List of Tables x

List of Equations xi

List of Acronyms xii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Related Work 6

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Domain Name System . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Passive DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 DNS Abuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Passive DNS Analysis . . . . . . . . . . . . . . . . . . . . . . 23

3 Malicious Payload Distribution Channels in DNS 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vi



3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Payload Distribution via the DNS Hierarchy . . . . . . . . . . 29

3.2.2 Use Cases of Payload Distribution . . . . . . . . . . . . . . . . 30

3.3 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Query and Response Patterns . . . . . . . . . . . . . . . . . . 32

3.3.3 Payload Distribution Detection . . . . . . . . . . . . . . . . . 38

3.4 Dataset Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.1 Query and Response Patterns . . . . . . . . . . . . . . . . . . 44

3.5.2 Payload Distribution Detection . . . . . . . . . . . . . . . . . 46

3.6 Limitations and Discussions . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Passive DNS Database 55

4.1 Introduction and Motivations . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Storing the data . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.2 Querying the database . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Conclusion and Future Work 76

vii



Bibliography 78

Appendix A 91

viii



List of Figures

2.1 Recursive DNS Query and DNS Hierarchy . . . . . . . . . . . . . . . . 8

2.2 DNS Tunneling Query and Response . . . . . . . . . . . . . . . . . . . 11

2.3 DNS Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Passive DNS Channels in SIE . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 The Placement of Our Work in the Literature . . . . . . . . . . . . . . 16

3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Query and Response Exchange Patterns . . . . . . . . . . . . . . . . . 34

3.3 Average Number of Query and Response Messages within Single Window 45

3.4 Distribution of Rating Values of the Detected Domains . . . . . . . . . 47

3.5 Alexa and Malware Domains DNS Record Access Counts . . . . . . . . 48

3.6 Effect of Filtration Mechanisms on the Detected Domains . . . . . . . . 49

3.7 A Daily Observation of the VH Intensity Level with the Filtration. . . 50

4.1 Passive DNS Database Overview . . . . . . . . . . . . . . . . . . . . . 64

4.2 Libraries Used in this Project . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Cassandra Read Workload Comparison with HBase and MongoDB . . . 66

4.4 Cassandra Write Workload Comparison with HBase and MongoDB . . 67

4.5 Flow of the Writing Process . . . . . . . . . . . . . . . . . . . . . . . . 69

A.1 Simple Zone File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.2 Database Schema: RR Set Tables . . . . . . . . . . . . . . . . . . . . . 92

A.3 Database Schema: RR Data Tables . . . . . . . . . . . . . . . . . . . . 93

A.4 Sample Query by Using the Application Programming Interface (API) . 94

ix



List of Tables

2.1 DNS RRs Used in our Work . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Probability Value Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Dataset Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Statistics of Detected Morto Worm Domains . . . . . . . . . . . . . . . 51

4.1 Comparison between the Input and Output Channels . . . . . . . . . . 60

4.2 Data Fields in the Output Channel . . . . . . . . . . . . . . . . . . . . 62

4.3 Wildcard Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Configuration Parameters of the Writing Process . . . . . . . . . . . . . 70

4.5 Query Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 Throughput of our Project with the Official Benchmark Results of Cas-

sandra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

x



List of Equations

3.1 Normalized Distance Function . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Ratio between Access Counts . . . . . . . . . . . . . . . . . . . . . . . 40

xi



List of Acronyms

2LD Second-Level Domain

3LD Third-Level Domain

API Application Programming Interface

C&C Command and Control

ccTLD Country Code Top-Level Domain

DDoS Distributed Denial of Service

DGA Domain Generation Algorithm

DKIM Domainkeys Identified Mail

DMARC Domain-based Message Authentication, Reporting and Conformance

DNS Domain Name System

EDNS Extension Mechanisms for DNS

FBI Federal Bureau of Investigation

FIFO First In First Out

FQDN Fully Qualified Domain Name

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IP Internet Protocol

IRC Internet Relay Chat

xii



ISP Internet Service Provider

JSON JavaScript Object Notation

MAC Media Access Control

NCFTA National Cyber-Forensics & Training Alliance

NDA Non-Disclosure Agreement

OE Opportunistic Encryption

P2P Peer-to-Peer

pDNS passive DNS

RDBMS Relational Database Management System

RDP Remote Desktop Protocol

RFC Request for Comments

RR Resource Record

SIE Security Information Exchange

SOA Start of Authority

SPF Sender Policy Framework

SQL Structured Query Language

TLD Top-Level Domain

TTL Time to live

UDP User Datagram Protocol

URL Uniform Resource locator

VLAN Virtual Local Area Network

xiii



Chapter 1

Introduction

1.1 Motivation

DNS is a part of our daily Internet activities, and it is tightly coupled with any

network infrastructure. It is a simple yet powerful database, which holds Internet

Protocol (IP) addresses of every domain name. Therefore, Internet users do not need

to remember the IP addresses of websites, they only remember a domain name, which

is dedicated for a particular website, e.g., google.com. DNS is a fundamental part

of any activity in the Internet, and it is attracting botmasters to use its facilities to

maintain their malicious networks.

DNS is often abused by attackers, and the recent incidents have showed that it

is still a vulnerable protocol [72, 73, 43]. Spamhaus1, a non-profit anti-spam orga-

nization, was a target of DNS based Distributed Denial of Service (DDoS) attack.

It was the biggest DDoS attack in the history, and it crippled the infrastructure

of Spamhaus [72]. Moreover, the attack almost affected the global DNS traffic [72],

which straightforwardly affects the Internet all around the globe. In another incident,

a malware family, namely DNSChanger, affected more than four million computers

in the US alone. The situation became serious that Federal Bureau of Investigation

(FBI) took over the case to fight against this profit oriented criminal activity [88]. The

1http://www.spamhaus.org/

1



attack is accomplished by changing the DNS host settings on an infected machine,

therefore all DNS queries are redirected to a rogue DNS resolver, which is operated by

the botmasters. The whole eradication process required to block infected machines

from connecting to the Internet. These attacks show how fragile DNS is, and any

attack on DNS can render the Internet almost unusable.

Attackers do not only attack on DNS, they also make it a fundamental part of their

malicious networks. Recently, DNS is used by botmasters to breach secure networks

to steal sensitive information without alerting network security systems [22]. It is

used as a stealth communication channel between bots and Command and Control

(C&C) servers. The DNS traffic is often considered to be harmless, and network

administrators allow it to bypass any security monitoring. This gives an opportunity

to botmasters to send and receive data, even in highly protected networks. Compared

to other protocols (e.g., Hypertext Transfer Protocol (HTTP), Internet Relay Chat

(IRC), Peer-to-Peer (P2P)) [13, 32, 50], DNS becomes a perfect candidate for covert

channels in such networks. Moreover, its naive architecture provides facilities for data

transfer. Any existing defense technology against botnet communication channels is

rendered useless with this new type of attack. The attack is based on a vulnerability of

the DNS protocol, which allows to embed arbitrary strings in DNS query and response

packets. Botmasters send the attack payloads in DNS queries, and bots use the same

method to talk back to botmasters. In this way, a malicious payload distribution

channel is established in DNS. Because the entire communication is established in

DNS queries, the communication channel is only traceable in DNS logs, which is

often not monitored in a network. Beside, any semantic based analysis on DNS logs

might result in a high amount of false positives or negatives. It is required to have an

2



approach to monitor DNS in a global scale to detect such communication channels,

and alert the authorities about domains involved.

Detecting any DNS based threat requires a hands-on experience with real DNS

data logs. This type of studies are often done by using local network DNS logs,

however local logs cannot be used to look at global trends in malicious activities.

It is important to analyze global DNS activities to understand and design defense

mechanisms against emerging threats, such as malicious payload distribution channels

in DNS. PDNS replication provides a good dataset for such studies. PDNS is a system

that is deployed on name servers to replicate DNS queries for different purposes, i.e.,

security research. For example, pDNS is used to detect botnets by analyzing DNS

query anomalies [12]. However, it is a continuous data stream, and we need to have

a historical database of pDNS to correlate previous attacks with current ones to

model the behaviors of malicious communication channels. An efficient and scalable

database solution is required to store this tremendous amount of DNS data.

1.2 Problem Statement

In this dissertation, the detection of malicious payload distribution channels in DNS,

and the design and implementation of an efficient and scalable pDNS database are

addressed. Additionally, the necessity of having such historical data for DNS based

research are discussed.

The main research questions investigated in this dissertation are:

3



1. Question 1: Is it possible to model the behavior of DNS based malicious

communication channels, therefore to characterize them based on the amount

of the transferred data?

2. Question 2: How to quantify this abuse and identify the sources as well as

the involved infrastructures?

3. Question 3: Even though the data is encrypted, is it feasible and possible

to detect such malicious channels in DNS without any decryption or malware

reverse engineering efforts?

4. Question 4: In terms of efficiency and scalability, is it possible to create a

pDNS database to observe the changing behaviors of malicious payload distri-

bution channels?

1.3 Contributions

The main contributions of this dissertation are:

Detection of payload distribution channels in DNS: A malicious payload dis-

tribution channel in DNS is a new concept, which is adapted by different malware

families [29, 65]. Therefore, the analysis of these channels is very limited in the

literature, and the proposed detection mechanisms are specific to certain malware

families [29]. Our system is proposed to fill this gap in the existing research work.

First, we present a thorough analysis of such channels, and discuss the techniques

used by them. Based on the analysis, we model the behaviors of these channels

to be able to categorize different C&C communication types. The novel detection

4



mechanism that we propose is based on the domain zone activities, which can detect

even encrypted communication channels. Finally, we test our system with pDNS for

one month, and we can detect long-lasting malware domains, which are previously

unknown.

Design and implementation of a pDNS database: We use pDNS which is very

useful for security investigation, however during our analysis on malicious payload

distribution channels, we needed a historical pDNS database. We are required to have

a scalable and efficient design, which can handle tremendous amount of the pDNS

traffic. Also, the lookups to the database have to be efficient. We implemented an

API and a web interface to access to the database. It is important to mention that

after the completion of writing this dissertation, my colleagues in NCFTA has started

working on the design of a pDNS database, which is based on a library (mtbl) [38]

developed by Farsight Security, Inc. [1]

1.4 Structure

The rest of this dissertation is organized as follows. In Chapter 2, we detail the

background information on DNS, DNS tunneling, and pDNS as well as existing related

work that are relevant to this dissertation. Chapter 3 presents our work on the analysis

and detection of malicious payload distribution channels in DNS. Afterwards, we

present our pDNS database design and implementation in Chapter 4, and in Chapter 5

we conclude the work presented in this dissertation, and provide some future research

directions.

5



Chapter 2

Background and Related Work

2.1 Background

In this section, we introduce some of the concepts that are fundamental background

to the work presented in this dissertation. The section starts with a presentation

of DNS, and later we highlight DNS tunneling. Afterwards, the pDNS technique is

explained.

2.1.1 Domain Name System

The DNS protocol is designed to be a translation service for the Internet infrastruc-

ture. Every web request to a domain name is initiated by a DNS query to receive

an IP address, which corresponds to the domain name. Hence, remembering domain

names instead of numerical IP addresses simplifies the use of the Internet.

Fully Qualified Domain Name (FQDN) is a domain name that shows the location

of a computer in the DNS hierarchy. The structure of a FQDN can be considered

as a tree with multiple parts, which are placed according to a hierarchy. A FQDN

users.encs.concordia.ca. has multiple labels, which are separated by dots. The

rightmost label (ca.) is the highest level and the leftmost label (users.) is the lowest

level in this hierarchy. The start of the hierarchy is the Top-Level Domain (TLD),

therefore labels are named accordingly. ca. is the TLD, concordia.ca. is the Second-

6



Level Domain (2LD), encs.concordia.ca. is the Third-Level Domain (3LD), and

so on. Any label that comes after the 2LD is considered as a sub-domain of the 2LD.

In DNS, response data is stored in authoritative name servers that are responsible

for a particular domain name. These name servers are named as Start of Authority

(SOA), and they hold the original information of a domain in a zone file. Although

authoritative name servers are the center of information for their authoritative zone,

they are often configured to be a master server, and slave name servers are setup

to respond to DNS queries. This is an optimization in the network level by system

administrators, especially for domains that receive a large amount of DNS queries,

e.g., google.com. Therefore, a zone file is an important element of an authoritative

zone in a DNS hierarchy. It defines the services running under a particular domain.

The entries in the zone file are called RRs. In a zone file, a 2LD name usually has

multiple RRs dedicated for different purposes (see Figure A.1 in Appendix). These

records consist of five main components: name, class, type, Time to live (TTL), and

data. The RR name is in FQDN form, and the sub-domains of 2LD are defined

and mapped to the corresponding RRs in the zone file. In some cases, a wild-card

(*) can be used as a label to return the same RR for any sub-domain [63]. A sub-

domain can be setup to have its own zone file with a dedicated name server. In

this case, the name server of the 2LD delegates queries to the name server of the

sub-domain. This technique is called zone delegation, and it is often used for easing

the management of different sub-zones under a domain [47]. The length of the RR

name cannot exceed 256 bytes and each label length is limited to 63 bytes [64]. The

RR class defines name spaces, that are used for different purposes within the DNS

protocol. The default value for RR class is IN, which stands for the Internet. The RR

7



type indicates the type of information carried by the DNS message. In Table 2.1, we

list some of the RR types used in our work. The TTL value is a time period used by

DNS servers to determine how long to cache the response before discarding it. The

RR data is the response information assigned to a RR name.

Client Recursive Resolver

a.root‐servers.net.

a.gtld‐servers.net.

ns1.example.com

ns1.sz.example.com

(root server)

(.com server)

(example.com sever)

(sz.example.com server)

DNS HierarchyLocal Network

R: sz.example.com IN A 1.2.3.4

Q: sz.example.com IN A
Q: sz.example.com IN A

R: .com IN NS a.gtld‐servers.net.

Q: sz.example.com IN A

R: example.com IN NS 
ns.example.com

Q: sz.example.com IN A

R: sz.example.com IN NS 
ns1.sz.example.com

Q: sz.example.com IN A

R: sz.example.com IN A 
1.2.3.4

Figure 2.1: Recursive DNS Query and DNS Hierarchy

The protocol is designed to be a simple database lookup with queries and re-

sponses. The query is started at the host machine by its stub resolver, which is a

simple resolver that initiates DNS queries. Stub resolvers delegates the query to a

local DNS resolver, which is defined in the host settings. The DNS resolver then

8



RR type Description
A/AAAA IPv4/IPv6 address
NS Name server
MX Mail server
TXT Text information associated with a name
CNAME Canonical name or an alias name

Table 2.1: DNS RRs Used in our Work

interacts with the DNS hierarchy to receive the answer for the query. In a typical

scenario, a user puts a FQDN (sz.example.com) in the address bar of a web browser

to start browsing the Internet. As he presses the enter key, the stub resolver on the

host machine sends a DNS query to the local DNS resolver as seen in Figure 2.1.

If the resolver does not have a cached copy of the RR, it starts querying the DNS

hierarchy by starting from the root DNS servers. These servers are the backbone of

the entire DNS infrastructure and they hold the IP address information of authorita-

tive name servers of TLDs. Based on the TLD of the query, root servers return the

corresponding IP address of a name server to the DNS resolver. The next step, the

DNS resolver queries to this name server to receive the IP address of the name server

that is authoritative for the 2LD of the query. As seen in Figure 2.1, the recursive

query continues until it reaches to the final zone, where the response of the original

query is stored.

DNS-based Security Measures

Sender Policy Framework (SPF) [89], Domainkeys Identified Mail (DKIM) [5], Domain-

based Message Authentication, Reporting and Conformance (DMARC) [55], and Op-

portunistic Encryption (OE) [78] are existing specifications, which are facilitated by

Internet Engineering Task Force (IETF), that use DNS as a part of their mechanism.

9



They are used to protect domains, hence domain owners, against different types of

security threats. To implement these specifications, the domain administrators cre-

ate entries in the zone file of their domains. Because the operational data of these

specifications is in text form, they are often stored in TXT RR, which is the a flexible

RR type in terms of the syntax format.

SPF defines the authenticated mail servers that can use a particular domain for

emails. When a mail server receives an email, it can verify whether the received

email can be sent by that particular IP address or not by querying the TXT RR of

the 2LD of the email address domain. The same applies to DKIM, which is used for

authenticating emails that are sent by a domain. This security mechanism is rather

applied to emails by verifying a signature in the email header. The verification is done

by simply receiving the public key of the email address domain, which is stored in the

TXT RR. DMARC is a specification that creates a layer between email recipients and

existing specifications, i.e., SPF and DKIM. It is designed to simplify the handling of

these specifications, and eventually to promote the use of them. There are also other

known methods that store some data in TXT RRs such as OE, which uses DNS as a

means to distribute public keys for different purposes [78].

DNS Tunneling

The concept of using DNS for data transfer is introduced by Dan Kaminsky [53]. He

demonstrates the feasibility to use DNS queries to exfiltrate data, and DNS response

packets to receive data. As seen Figure 2.2, tunneling queries and responses are long

due to the embedded data. In the query, the data is added as a sub-domain label,

and it might be multiple labels due to the restriction in the length of labels. The RR

10



type can be TXT, CNAME, or NULL. However, it is often TXT because CNAME

is more limited in terms of syntax format, and NULL might be dropped by some

DNS resolvers. Both outgoing and incoming data is encoded with Base64. However,

there is no restriction in the encoding scheme as long as it uses a suitable alphabet

for DNS [63].

 DNS Ƌueƌy: 
GoϲfdtgZϬlIQǇAǆϭVWJǁǀzdHdǆMpHuϲǆfMRƋϴsVSfƋǁPǀIϵT.dŶstuŶŶel.Đoŵ IN TXT 
 

DNS ƌesponse: 
ǆMtǁHYRǇZuzϰQďhBKZIVWǀPBfiuGjďϭWQǆtZNϳPRϵWfϬsfŶAƋǆDOJDϵLgŵǁfFaU 

GoϲfdtgZϬlIQǇAǆϭVWJǁǀzdHdǆMpHuϲǆfMRƋϴsVSfƋǁPǀIϵTEIVϴpkXǁϰPϰTCSHϬϱ 

BAOϭLGPMQXDTYLYϮǁoǆMϭjϬϲŵCMhƌNjWzIϴWďŵCBljϮdpRϳϯKBŶDlDRŵheKWMJ 
ǆϮdUTpϰiFMHϰNϵkXjeOYis== 

Figure 2.2: DNS Tunneling Query and Response

DNS tunneling can be used to bypass restricted networks, such as commercial

WiFi hotspots. These networks allow all DNS traffic. However, they require authen-

tication to connect to the Internet. In this context, DNS is used as a carrier for other

protocols by embedding outbound and inbound traffic into query and response mes-

sages respectively. The possibility of having free Internet connection grabs attentions,

and then several open-source DNS tunneling tools are developed [61].

In a normal scenario, there are two key players in a DNS tunnel; a host and a

remote server as seen in Figure 2.3. The server and the host can be any computer

that has access to the Internet. Once these machines are ready, a DNS tunnel user

has to have control over the zone file of a domain. A domain name is required to

orchestrate the traffic, and it can easily be obtained for free by using dynamic DNS

providers (e.g., http://freedns.afraid.org). The user has to set an NS record, which

11



points to his remote server (ns.dnstunnel.com). Therefore, any DNS query to that

domain will reach to the name server of that domain. The remaining part of the

setup is that the user has to set up one of the existing DNS tunneling tools on both

the host and the remote server. The host script will encode the data and create DNS

queries to the domain in question (dnstunnel.com). The remote server decodes the

data, and replies with the demanded response. In Figure 2.3, the remote server plays

a proxy role between the user and the Internet.

Figure 2.3: DNS Tunneling

The feasibility of using DNS RRs to distribute payload has been proven by the

DNS tunneling technique, which shows that DNS can be used for transmitting any

type of information after simple encoding operations. However, there are some lim-

itations due to the low data transmission rate through RRs. DNS response packets

12



are limited to 512 bytes if Extension Mechanisms for DNS (EDNS) is not used [85].

EDNS is an extension mechanism for DNS to enhance the protocol based on the in-

creasing capacity of network systems, which increases the DNS packet size up to 4096

bytes. However, some firewalls might not accept DNS responses that are larger than

the default 512 bytes. This potential drawback forces botmasters to find stable ways

to utilize DNS for payload distribution channels.

2.1.2 Passive DNS

Passive DNS is a technique to replicate the global DNS activities in order to investi-

gate it in near real-time. Florian Weimer introduces the first pDNS data collection

mechanism [87]. In his proposal, the initial aim is to fix the inconsistency between A

and PTR records. PTR records are used for reversed lookup to find out the domain

name of a given IP address. Therefore, the mappings between IP addresses and do-

main names require constant updating due to dynamic IP addresses. Therefore, DNS

can be replicated, and it can be used as a historical database to run such reversed

queries as well as to gain other intelligence on domain names. There are several im-

plementations of such pDNS replicating systems including the Security Information

Exchange (SIE) initiative provided by Farsight Security, Inc. [1]

The Security Information Exchange (SIE) Initiative

Passive DNS in SIE is generally believed to be the most established implementation

of Weimer’s proposal. It has a distributed architecture to deploy replicating sensors

all around the globe, and build a central information center [26, 30]. The system is

fed by globally deployed sensors, which are placed in or near recursive name servers

13



Channel 202

Channel 207

Channel 208

Channel 206

Channel 204

Deduplicated

data

Deduplicated

Verified data

Filtered

data

Out‐of‐bailiwick
data

Unparseable

data

DNS data 
replicating sensors

Figure 2.4: Passive DNS Channels in SIE

in different networks. These sensors duplicate the traffic passing through these name

servers, and upload the data to a central processing pipeline.

As seen in Figure 2.4, pDNS replicating sensors upload captured query and re-

sponse DNS packets to the infrastructure of SIE. These channels are actually Virtual

Local Area Network (VLAN) connections, which can be accessed for different pur-

poses. Initial uploads from sensors are sent to the channel 202, which outputs the

raw data. If a packet is missing response, or there is only response; it is discarded,

and sent to channel 206. From channel 202 to 204, repeating RRs are combined into

a single RR by de-duplication and re-de-duplication processes. Also, some filtering

and blacklisting are applied to remove the artifacts of cache poisoning attacks [30].

14



2.2 Related Work

In this section, we first discuss existing works on the detection and mitigation of DNS

abuses in two folds: protocol-level and system-level. Afterwards, we focus on recent

research efforts in terms of establishing and analyzing pDNS to detect existing and

emerging security threats.

2.2.1 DNS Abuses

DNS is often targeted by malicious networks for different purposes. It can be either

hijacking a victim’s web request, or establishing a resilient network with multiple

layers of proxies. In any case, DNS is abused by botmasters to accomplish their

malicious goals. Based on the nature of abuses, they can be categorized as protocol-

level and system-level as seen in Figure 2.5. In the following sections, we will present

an overview of the research works on detection and mitigation of DNS abuses at

different levels.

Protocol-level Abuses

The naive architecture of the DNS protocol allows botmasters to use it to establish

covert communication channels or fast-flux networks by simple tweaks within the

protocol. These abuses show that the DNS protocol allows attackers to transfer

information in DNS query and response packets [29, 65, 76] or to create malicious

networks by pointing thousands of compromised machines with a single domain [20,

49, 66].

15



                  

DNS abuses

System level 
abuses

Rogue DNS 
servers

DNS Poisoning DGA
DNS DDoS 

Amplification

Protocol level 
abuses

DNS tunneling

Network‐
specific tunnel 
detection

Design of 
resilient 
tunnels 

Performance 
analysis of 
tunneling

Detection of 
malicious tunnel 

traffic

Fast flux 
networks

                    
        ‐    

 

Figure 2.5: The Placement of Our Work in the Literature

DNS Tunneling: The use of DNS as a communication medium for payload distri-

bution is relatively new and research activities on this topic are limited. Although,

these studies are scattered, they can be roughly grouped under two categories: ma-

licious attack payload distribution channels in the DNS protocol, and the DNS tun-

neling.

Dietrich et al. [29] first discuss the existence of botnets that tunnel C&C commu-

nication channels through DNS. They discovered a malware family, which is named

Feederbot, that exfiltrates data within DNS query sub-domain labels, and infiltrates

attack payloads in DNS response packets. Their detection method introduces ex-

traction of several features from the response data. While their work shows promis-

ing results, it is limited to the detection of aggressive DNS tunnels for C&C chan-

nels. Some malware families use more resilient methods for receiving attack payloads

through DNS rather than the DNS tunneling [65]. Also, their work focuses on the

assumption that there will be a certain degree of traffic, while our analysis shows that

16



some families use DNS to receive a very limited amount of payload, e.g., the Morto

malware family [65]. Moreover, we find that malware might not receive Base32 or

Base64 encoded payload, rather clear text in TXT records. Xu et al. [19, 3] introduce

a resilient mechanism for bots to create covert channels through DNS for C&C com-

munications. They design a stealthy C&C architecture that supports two different

modes. The Codeword mode creates a uni-directional communication channel that

pulls the attack payload. The tunneled mode creates a bi-directional communication

channel between bots and the C&C server. They also mention some techniques to

increase the stealthiness of these channels to make them virtually undetectable from

the compromised host’s perspective. In fact, during our analysis in pDNS and mal-

ware datasets, we find that their proposed methods are already used by some malware

families such as Feederbot, Morto [29, 65]. While their technique can easily defeat

the host-based detection mechanisms, we are able to detect these malicious channels

in the pDNS traffic. We also found that malware families, which use bi-directional

channels, are often detected easily due to their extensive traffic. Similarly, Raman et

al. [76] propose a network penetration technique that uses the DNS tunneling to infil-

trate the attack payload. Their method is based on establishing a tunnel by an exploit

code. Our system can detect the payload distribution channel in pDNS regardless of

the format of the payload, as we do not inspect the content of DNS messages. Also,

there is an ongoing effort from IETF in preventing name servers being abused by

botmasters for attack payload distribution [44].

DNS tunneling has gained a growing interest in the academia, as it offers a wide-

range of opportunities to establish covert channels in DNS. So far, it has been stud-

ied from different perspectives, such as security, feasibility and performance. Dušan

17



Bernát [11] formalizes the use of DNS as a communication medium by modeling a

storage-like read/write mechanism in the protocol. The studies in DNS tunneling

also focus on the detection of such covert channels in network traffic. Especially af-

ter development of several DNS tunneling tools, researchers have emerged to design

detection techniques for the traffic of these tools. There are some proposed methods

for detecting DNS tunneling within a network by using n-gram analysis [16, 17, 75].

They present promising results in terms of detecting the tunnels. However, malicious

payload distribution channels often do not have extensive upstream data; thus they

do not show this characteristic feature of DNS tunneling tools. Therefore, any string

based analysis on the queries might not reveal enough differences between regular and

malicious queries to detect these channels. Also, our system detects payload distri-

bution channels regardless of the syntax by using DNS zone activities (Section 3.3.3).

Greg Farnham [33] discusses existing open-source DNS tunneling implementations,

and proposes a mechanism for the detection of these tools. This mechanism is mainly

based on using a set of rules for Intrusion Detection Systems (IDSs). Although IDSs

are effective for capturing malicious data streams in network traffic, signature-based

systems are often prone to false positives [81]. Several studies [4, 61, 84] analyze

existing DNS tunneling tools from the performance perspective, as DNS tunneling

often raises concerns on the limitation of DNS packet sizes. They conclude that these

tools create a significant overhead in the network traffic . Finally, Ellens et al. [31]

apply network flow analysis methods on DNS tunnels to detect them accurately within

the network boundaries. It shows that DNS tunnels can be investigated like any other

network-based covert channel. However, it is important to mention that this work

and the proposals reported in [16, 17, 75] are limited to the detection of tunnels within

18



a given network, whereas we detect such channels in the global DNS traffic without

limiting it to a single network.

Kenton Born [14] investigates the possibility of establishing covert channels in DNS

by using web browsers. He shows that such channels can easily be initiated with web

browsers’ privileges, and any type of data can be exfiltrated without alerting IDSs.

The author also investigates [15] the possibility of piggy-backing existing DNS packets

without altering the packet structure. It is an alternative DNS tunnel as opposed to

traditional DNS tunneling implementations [61]. There are several studies on building

a covert channel by manipulating DNS query and response packets [18, 67]. They

discuss sending and receiving data through DNS query and response packets in the

traditional DNS tunneling paradigm (Section 2.1.1). Paxson et al. [69] propose a

comprehensive solution for the detection of covert channels in DNS. The proposed

solution is based on the possibility of the existence of different types of covert channels

in DNS. For example, bots can exfiltrate boolean data by using predetermined values

in DNS query sub-domains, or by timing the queries in a predetermined pattern.

While the study shows promising results in live and pDNS datasets, it can be a

complementary solution to our proposal as our work does not rely on the packet

content.

Fast-flux Networks: Fast-flux networks are established by returning a different

set of IP addresses for each DNS query, therefore same domain name is mapped to

an extensive number of IP addresses. This approach makes it difficult to detect the

machine behind that domain name. Botnets are increasingly adapting malicious flux

networks because it gives them the freedom of establishing a protective layer in front

of C&C servers [80]. The detection of these servers has become more complex, and

19



even if they are detected, most of the time botmasters reach their goals before domain

take-downs. There are several studies [20, 49, 66, 68, 71] in the field of analysis and

detection of malicious flux networks. Their methods are based on characteristics of

these networks, and they use certain features, e.g., the diversity of IP addresses and

name server records. Perdisci et al. [70] analyze fast-flux networks in pDNS, and as

opposed to the previously proposed methods [49, 66, 68], they focus on the detection

of such networks without limiting it to domains that are found in spam emails.

System-level Abuses

DNS is a simple yet powerful system that consists of globally deployed name servers.

Every transaction in the Internet is initiated with a DNS lookup, therefore botmasters

try to exploit every possible point in the whole system. Recent studies show that

there are still unknown vulnerabilities almost at every layer of the system. The

authors of [6, 24, 25, 52] study cache manipulation attacks on caching DNS in the

DNS hierarchy. Antonakakis et al. [6] propose a system, namely Anax, for scanning

caching resolvers to detect possible cache poisoning attacks. This system is built

on top of the system, which is introduced in [24]. As opposed to this work, Jiang

et al. [52] introduce an uncovered vulnerability in DNS, which allows botmasters

to keep previously deleted domains alive. Although this vulnerability falls in cache

manipulation type of abuses, it highlights a serious architectural issue in the current

implementation of DNS. According to the attack definition, an attacker can get a

domain resolved by an authoritative name server, which the attacker controls, and

keep the cache alive in targeted open resolvers.

20



Dagon et al. [25] propose a novel method to resist against cache poisoning by

forcing caching resolvers to use mixed case encoding. Therefore, an attacker needs

to guess the encoding to find the cached data, and update it with malicious response

data. Even though the method seems to be efficient, the length of domain names

play an important role in terms of entropy. Domains with short names are likely to

be guessed easier than domains with longer names. Moreover, domain names, which

are composed of only numbers (e.g., 123.com), cannot be encoded with mixed cases.

Dagon et al. [27] investigate rogue resolvers, which resolve domains to malicious IP

addresses. Compared to cache poisoning attacks, this type of attacks target stub

resolvers rather than caching resolvers. In other words, DNS settings on a host

machine are altered to use rogue resolvers to delegate DNS queries. Therefore, these

resolvers map legitimate domains to phishing campaigns.

Studies on DNS based botnet detection show that newly registered malicious

domains have different characteristics compared to a regular domain [7, 12, 21, 46].

For instance, newly registered malicious domains tend to resolve within a certain

IP range, which is often in the control of botmasters [46]. One study [12] shows

that the lifetime of a malicious domain is very short, because botmasters often use

certain domains for dedicated campaigns. In [8, 12], the authors introduce techniques,

which are deployable to the top level name servers, to detect malicious domains in

the backbone layer of DNS. However, the positioning of the detection system is weak

in terms of correlating attacks through multiple networks. Antonakakis et al. [7]

observe domains for malicious activities in authoritative name servers. While this

method remains more fine-grained compared to [8, 12], the detection mechanism can

only detect domains that have similarity to previously seen domains. Choi et al. [21]

21



propose an algorithm to detect the botnet activities based on DNS queries. They

target the similarity of queries of bots from the same botnet. Although they are

focusing on query similarities, our work focuses on query and response patterns as

well as the DNS zone activities.

Another emerging system-level abuse of DNS is Domain Generation Algorithm

(DGA) based domains, which are randomly generated and queried by bots with the

hope of finding the registered domain. Botmasters also generate the same set of

domains concurrently, and register one of them. In this way, law enforcements and

other security organizations have difficulty to find malicious domains among thou-

sands of newly generated domains per day. This approach is also known as domain

fluxing [83]. There are several studies [9, 83, 90] introduce methods for the detection

of botnets, which use domain fluxing. Stone-Gross et al. [83] report the existence of

such malicious technique, specifically by a malware family Torpig. Interestingly, Tor-

pig uses Twitter as the source of randomness for generating random domain names.

On the other hand, [9, 90] consider the fact that bots receive a large amount of NX-

DOMAIN (Non-Existent Domain) responses, because randomly generated domains

are not registered most of the time. NXDOMAIN response is returned when the

domain in question does not exist. Yadav et al. [90] test their method with an off-

line datasets, whereas [9] deploy their system, namely Pleiades, in live traffic from

two major Internet Service Providers (ISPs). Both systems show promising results

with high accuracy in the detection of such botnets. However, [9] do not rely on any

blacklists or predefined structure from any botnet, therefore it could detect previously

unknown botnets.

22



2.2.2 Passive DNS Analysis

Passive DNS is definitely important for DNS related studies. So far, the number of

studies, which use pDNS as a data source, has been increasing, and it seems that

pDNS will become one of the de-facto data sources for threat analysis.

There are studies in using pDNS for detecting malicious activities in near real

time [23, 26, 28, 58, 59, 60, 92]. All of these studies discuss the effectiveness of

utilizing replicated DNS traffic for understanding the attack methodologies used by

botmasters. Marchal et al. [59] introduce a framework, namely DNSSM, to build

domain-based analysis by using DNS responses. From data capturing perspective,

it uses Weimer’s technique [87] as explained in Section 2.1.2. The system mirrors

the live DNS traffic by capturing query and response packets in a recursive resolver.

On contrary to the common practice, the authors designed their framework to store

domain-based features, e.g., number of IP addresses, and TTL values. In common

practice, DNS data would be stored as it is captured, and it would allow researchers

to use the captured data for different types of analysis. In our pDNS database (Chap-

ter 4), we rather follow the common approach. The authors use ten features to detect

malicious activities, including a feature to pinpoint approximate geographic location

of physical machines. Marchal et al. [60] design an architecture for the actual imple-

mentation of the pDNS analysis framework [59], that they have introduced. Because

analyzing such intense data source requires distributed storage and computation, the

authors utilize Apache Hadoop1 and Apache Cassandra2. As a proof of concept, they

test their framework and architecture with a sample data set. It shows that their set

1http://hadoop.apache.org/
2http://cassandra.apache.org/

23



of features, which were introduced in [59], are accurate in detection of certain types

of DNS anomalies.

Marcha et al. [58] propose an approach to analyze pDNS in a semantic-aware man-

ner. The approach involves using natural language processing methods to determine

the potential of a domain to be malicious. The authors ascertain models of mali-

cious domain names by determining potential keywords, which are used in phishing

domain names. Phishing domains are often composed with eye-catching keywords,

such as, pharmacy, paypal, and ebay. It is also important to mention that the system

is scalable, even with the pDNS data from big ISPs.

Paul Vixie and Jun Murai [86] discuss the design and implementation process of

one of the biggest pDNS deployments, SIE from Farsight Security, Inc. [1] Because

SIE has deployed sensors in or near recursive name servers in the US and Europe,

it requires a scalable architecture. One of the key elements of the architecture is to

provide different channel outputs, which allow researchers easily investigate various

security problem without putting extra effort for data processing. For example, one

channel allows to analyze the raw DNS data, which comes right from the name servers,

and another channel provides data, which have been sanitized from cache poisoning

attacks. Similarly, Luciana Costa and Roberta D’Amico [23] introduce an architecture

for the pDNS replication. However, their solution is not distributed, rather part of

a security intelligence project for a local ISP. Zdrnja et al. [92] discuss building a

security intelligence platform by monitoring DNS passively. Although their approach

is similar to previous solutions, their evaluation is limited to a university network.

From scalability perspective, their approach remains rather naive because it is limited

to a network, and requires improvement in terms of the scalability.

24



Finally, Deri et al. [28] introduce a unique method to the pDNS analysis. Their

system observes domains for existing and emerging economical trends within the

authoritative zone of the Country Code Top-Level Domain (ccTLD) registrar of Italy,

which is responsible of .it TLD. The system is deployed in the name servers of

this registrar, and logs the DNS traffic passing through these servers. These logs

are analyzed to detect trends in domain names, and the results of the analysis are

reported to a central data store. However, the system lacks the intelligence on Italian

domains, which use other TLD, i.e., .com, .org. Also, the work is limited to the

analysis of domain names, and it requires a semantic-aware analysis of the actual

content of the websites.

25



Chapter 3

Malicious Payload Distribution Channels
in DNS

3.1 Introduction

A common approach to bypass network defense borders is by tunneling the commu-

nication through existing protocols. Such tunneling can effectively defeat traditional

firewalls and IDSs. Botmasters also often prefer tunneling to keep their communica-

tions under the radar. In the early stages of botnets, botmasters mostly used IRC

channels (e.g., Agobot [48]) to operate and control their activities. The advancement

of newer protocols (e.g., instant messaging, P2P, and HTTP) largely outdated the

use of IRC channels [2]; see e.g., Zeus [32] (HTTP based), Storm [50] (P2P based).

As a natural extension to exploiting common protocols for tunneling, DNS comes

into play due to its wide availability. DNS is a query and response protocol, which

responds to each query with the corresponding pre-defined RR. The simple but ro-

bust architecture of DNS attracts botnets to abuse the system for different malicious

activities [9, 25, 27, 29].

In 2004, Dan Kaminsky [53] demonstrated the feasibility to bypass restricted

networks that allow all DNS traffic, such as commercial WiFi hotspots, that require

authentication to connect to the Internet. In this context, DNS is used as a carrier for

other protocols by embedding outbound and inbound traffic into query and response

26



messages respectively. Since then, DNS tunneling has been used to design several

application tools [61], which operate covert channels through the public DNS infras-

tructure. Moreover, these tunnels can be established by using free DNS providers,

which are already known to be abused for different types of malicious activities [10].

In RSA 2012, Skoudis [82] mentions an information theft case, which is carried out

by a malware family using the DNS protocol to exfiltrate information.

Botmasters take advantage of DNS tunneling to conduct malicious activities such

as C&C or payload distribution. In payload distribution channels, for instance, bot-

masters use DNS query and response packets to carry out malicious instructions and

payload updates to individual bots. Recently, a few malware families have been iden-

tified as using the DNS protocol to hide their communications, including Morto [65],

Katusha [2], and Feederbot [29].

Due to the inherent nature of DNS, it is quite inefficient as a payload distribution

channel compared to other protocols, which botmasters often use [84]. However, DNS

infrastructures still have been abused by a few botnet families in the recent past. Such

examples indicate that botmasters are willing to exploit DNS as an attack channel

due to its wide availability. Previous works on DNS abuses [29] mainly focused on

specific botnets, and DNS abuses have not been comprehensively studied as compared

to e.g., P2P botnets [50].

In this work, we propose a detection mechanism for DNS payload distribution

channels by leveraging some inherent features of DNS as used by malicious and non-

malicious domains. We use this mechanism to analyze a significant amount of DNS

traffic to understand the extent of DNS abuses in the wild. We have detected few

previously unknown long-lasting malware domains and different types of payload

27



distribution channels. Considering the fact that DNS is vulnerable to such attacks,

our system puts the defense line one step ahead of the botmasters. Moreover, our

proposed technique, which is based on the analysis of RRs, shows promising results

regardless of syntax format of payload distribution channels.

The main contributions of this work are as follows:

• Thorough analysis of malicious payload distribution channels: We

present an analysis of these channels with 1-year malware dataset covering Jan.-

Dec. 2012.

• Characterization of DNS messages: We find that malicious networks used

different techniques for distributing attack payloads, including an indexed query

pattern to distribute the attack payloads in multiple parts. We introduce a

technique to determine channel patterns, and discuss the feasibility of each

pattern. We find that most of the malware instances are using a resilient pattern

to retrieve the attack payloads.

• Detection of payload distribution channels using the pDNS traffic: We

propose a method to detect payload distribution channels based on the analysis

of resource record activities, and determine the intensity of the distribution by

using a fuzzy set theory.

• Evaluation of the system in the pDNS traffic: We experiment our system

on 3 different datasets: pDNS, pDNS database, and a dataset of 1-year malware

dynamic analysis reports.

28



3.2 Background

In this section, we outline key differences between DNS tunneling and payload distri-

bution channels. Then, we discuss the use of these channels both for legitimate and

malicious purposes.

3.2.1 Payload Distribution via the DNS Hierarchy

Recently, DNS has become a target to distribute malicious payloads for two main

reasons. First, DNS traffic is often allowed to pass without inspection in corporate

networks, as it is considered to be a core element of the Internet activities. Second,

the DNS protocol has some fields that are defined to be more flexible, which opens

the doors for other unintended uses. Malicious payload can be stored in different RRs

(e.g., NULL, TXT, or CNAME). The payload data can be cached in DNS resolvers,

and they can be accessed even if C&C servers are down. Also, the labels within

the RRs name can be used to store Base32 encoded data. Request for Comments

(RFC) 1464 paves the way for payload distribution by opening the possibility of

storing arbitrary information within DNS messages [79]. However, it recommends to

store key-value pairs to share some operational data between servers. The feasibility

of using DNS RRs to distribute payload has been proven by the DNS tunneling

technique, which shows that DNS can be used for transmitting any type of information

after simple encoding operations. However, botmasters face some limitations due to

the low data transmission rate through RRs. In general, payload distribution channels

are established in the same way as DNS tunnels are established [84].

29



3.2.2 Use Cases of Payload Distribution

Payload distribution through DNS is relatively a new concept, and it has very limited

number of legitimate uses. Some organizations have been inspired by the evolution

of DNS tunneling, and started to use DNS as a means to channel a part of their

operational data to enhance their systems.

Legitimate Use Cases: In 2007, Trend-Micro Inc. proposed a method to distribute

malicious code signature updates through the DNS protocol [57]. The intention of this

technique is to feed anti-virus client software with signature updates through DNS,

as an alternative update mechanism. The signature updates are divided into several

chunks, which can be identified by an identifier number. These pieces are encoded

with Base64, and assigned to the zone file as TXT RRs of a specific domain name.

When the client needs an update of a malicious code signature, it sends a query

with an identifier number of the signature as the FQDN label. Then, the server

responds with the corresponding anti-virus signature in TXT records. In general,

each signature update can span over many TXT records, which makes the client

generate many queries to retrieve the whole pieces of the update. Finally, the client

combines all TXT records, and then forms the actual update of the malicious code

signature.

In 2009, Devicescape Software Inc. introduced a system for public hotspot au-

thentication systems for mobile devices [45]. In their model, there are public WiFi

hotspots, which are placed across many places such as coffee shops, and restau-

rants. The authentication system for these hotspots is managed through a centralized

scheme. The DNS protocol is used as a channel to transfer authentication parameters

30



between mobile devices and a credential server. The client software prepares a DNS

query, which consists of six sub-domain labels to carry different parameters, e.g., the

Media Access Control (MAC) address of the client’s machine. When the name server

receives the query, it forwards the parameters embedded in these labels to the back-

end credential server. Based on these parameters, the credential server prepares the

corresponding authentication response to be transported back to the client. Finally,

the client verifies the response, and then submits it to the authentication server in

the local hotspot network.

Malicious Use Cases: The crucial component of any malicious network is the com-

munication method, which should be resilient and efficient. Recently, DNS has been

used by malicious networks for updating bots with recent payload data (i.e., module

updates, command instruction). In 2011, Dietrich et al. [29] reverse engineered the

Feederbot botnet, which uses DNS as a C&C channel. Another example of the abuse

of the DNS protocol is the Morto worm, which uses DNS TXT records to transmit a

single piece of information. The embedded information is a Uniform Resource locator

(URL) that points to the real attack payload, as explained by Symantec in [65].

3.3 System Description

3.3.1 Overview

Our system monitors DNS queries and responses in pDNS, and detects payload distri-

bution channels established within DNS messages. As shown in Figure 3.1, the system

consists of two main modules: query and response pattern and payload distribution

detection modules. Initially, the system divides the captured DNS traffic stream into

31



epochs E = {e1, e2, · · · , em} (e.g. epoch = 1 day). For each epoch, it aggregates the

DNS queries and responses of a given domain name d. These collected messages are

sent to the query and response pattern analysis module, which determines the channel

pattern. Then, the collected messages are sent to the payload distribution detection

module which pulls all the DNS RR activities of the domain from the pDNS database.

This module finally determines the intensity of the payload distribution based on the

zone activities. We also introduce two filtering mechanisms because some legitimate

domains might resemble payload distribution channels. In the following two sections,

we show how these modules interact to characterize, and detect payload distribution

channels established in the pDNS traffic.

Passive DNS 
Pre‐processing

DNS Zone 
Analysis Passive DNS 

Database

Query‐
Response 
Pattern 
Analysis

Payload Distribution  
Intensity Analysis

Payload Distribution 
Detection

Passive DNS Sensors

MX Record 
Access Count Specifications

Payload 
Distribution  

List

Domain‐based Queuing1 2 3

4

67 5

Figure 3.1: System Overview

3.3.2 Query and Response Patterns

The DNS protocol is based on query and response messages, which are used to find

IP addresses of domains. A query from any client can be formed to retrieve different

information from a name server, which will respond accordingly. By observing the

32



communication between client and server, we can model the relation between query

and response messages. The query and response relations can be used to distinguish

between different behaviors of payload distribution channels. When we observe any

payload distribution activity, we have three parameters which are used to establish

the channels in DNS. These parameters are the 2LD, sub-domain, and TXT record.

The 2LD is the domain name, which is used to orchestrate the payload distribution

activity. The sub-domain is used to transfer any information from a client to a server.

The TXT record is the response information from the server to the client. During

any session, the client and the server agree on a specific domain name to be used for

the payload distribution activity. So, the 2LD parameter is determined before any

session. Now, we are left with two parameters that are used to form the communi-

cation channel. Based on the nature of the payload distribution channel, these two

parameters have different behaviors. The aim of query and response pattern analysis

module is to differentiate between different behaviors of payload distribution. To

achieve this goal, we analyze the exchange behavior of query and response messages.

This module is built based on two observations:

Observation 1 Payload distribution channels through DNS are forced to transfer

small quantities of information with each DNS message, because DNS response packets

are limited to 512 bytes of characters if EDNS is not used (see Section 2.1.1).

Observation 2 When transferring more information through DNS protocol, it results

a significant amount of DNS queries and responses between the client and the name

server (see Section 2.1.1).

Figure 3.2 shows four possible payload distribution scenarios, which are based

on the relation between sub-domains and TXT records. Figure 3.2a explains how

33



the client changes the sub-domains to send data to the name server, which responds

with the corresponding TXT records for each sub-domain (Many-to-Many relation).

Figure 3.2b shows how the client changes the sub-domains to update the name server

about its status, and the server replies with the same TXT record for all possible

sub-domains (Many-to-Single relation). Figure 3.2c explains how the client sends the

same sub-domain that is answered with several TXT records from the server (Single-

to-Many relation). This case rarely occurs within a small period of time, because

these responses are stored by caching resolvers for a period of time (see Section 2.1.1).

Figure 3.2d shows how the client sends the same sub-domain, which is answered by

only one TXT record from the server (Single-to-Single relation).

d

s1

s2

s3

s4

t1

t2

t3

t4

(a) Many-to-Many

d

s1

s2

s3

s4

t

(b) Many-to-Single

d s

t1

t2

t3

t4

(c) Single-to-Many

d s t

(d) Single-to-Single

Figure 3.2: Query and Response Exchange Patterns (d:2LD, s:sub-domain, t:TXT records)

34



Definition 1 The query and response pattern model is a tuple G = 〈(D∪T ∪S), E〉,

where:

• D = {d1, d2, · · · , dn} is a finite set of domain name nodes,

• S = {s1, s2, · · · , sm} is a finite set of sub-domain nodes,

• T = {t1, t2, · · · , tk} is a finite set of TXT record nodes,

• E ⊆ (D × S) ∪ (S × T ) is a finite set of pairs of distinct nodes, called edges.

We model the query and response relationship for each domain using a directed

graph as captured by Definition 1. For each vertex v in G, we define two functions:

the in-degree of v, which is denoted by inD(v), returns the number of entering edges

to the node v: inD(v) = |{u ∈ V | (u, v) ∈ E}|, and the out-degree of v, which is

denoted by outD(v), returns the number of leaving edges from the node v: outD(v) =

|{u ∈ V | (v, u) ∈ E}|.

As shown in Figure 3.2, the query and response patterns share some properties as

given by Property 1.

Property 1 inD(D) = 0, outD(T ) = 0, outD(D) = inD(S), outD(S) = inD(T )

In order to distinguish between the patterns shown in Figure 3.2, we determine

the distance between two integer values, which might be cardinalities of any given

sets, i1, i2 by using a normalized distance function as formulated in Equation 3.1.

Dis(i1, i2) =
|i1 − i2|

max(i1, i2)
(3.1)

35



Since the query and response patterns can form complex relationships, we extract

the commonly used pattern. When we compare between the degree values of two

nodes, we extract the strong node candidate from each targeted set. In our case,

we select the node, which has the largest degree value, since it reflects the common

pattern behavior. Each query and response pattern can be recognized by the following

properties:

Property 2 Given that t ∈ T and inD(t) is the largest value in inD(T ), then Many-

to-Many pattern holds when outD(D) is not close to inD(t) and |S| is equal to |T |.

Property 3 Given that t ∈ T and inD(t) is the largest value in inD(T ), then Many-

to-Single pattern holds when outD(D) is close to inD(t) and |S| is equal to |T |.

Property 4 Given that t ∈ T and inD(t) is the largest value in inD(T ) and s ∈ S

and outD(s) is the largest value in outD(S) then Single-to-Many pattern holds when,

outD(s) is not close to inD(t) and |S| is equal to |T |.

Property 5 Given that t ∈ T and s ∈ S, then Single-to-Single pattern holds when,

outD(s) is close to inD(t) and |S| is equal to |T |.

Algorithm 1 shows an overview of the query and response pattern recognition in

four steps. Step 1 (Line 1 in the algorithm) is taking a snapshot from the pDNS

channel for a pre-defined window of time. This step produces a set of query and

response messages for each domain that appears within the targeted window. Step

2 (Line 3 in the algorithm) is processing every domain name by constructing the

relation graph between sub-domains and TXT records. Step 3 (Lines 4-8 in the

algorithm) is calculating the out-degree vector for all sub-domains, in-degree vector

36



for all TXT records, and the out-degree of the domain. From these vectors, we get

the largest degree, which is considered as a strong representative for the relation

between sub-domains and TXT records. Step 4 (Lines 9-10 in the algorithm) counts

the distinct values of sub-domains and TXT records. Step 5 (Lines 12-23 in the

algorithm) determines the pattern mode based on the properties of each pattern.

The order of the properties in if statements are arbitrary.

Algorithm 1: ExtractQueryResponsePattern

Input: A domain name d, set of sub-domains S = 〈s1, s2, . . . , sn〉, set of TXT
records T = 〈t1, t2, . . . , tm〉

Output: Query and Response pattern mode,
{Many Many,Many Single, Single Single}

1 D ← getSnapshoptFrom pDNS(w)
2 foreach Domain d do
3 G← Create Relation Graph(d, S, T )
4 SubDomain Degree←Max(outD(S))
5 TXT Degree←Max(inD(T ))
6 Domain Degree←Max(outD(D))
7 SubDomains Counter ← |S|
8 TXT Counter ← |T |
9 Pattern Mode = None

10 if Property 5 then
11 Pattern Mode = Single Single

12 else
13 if Property 2 then
14 Pattern Mode = Many Many

15 else
16 if Property 3 then
17 Pattern Mode = Many Single

18 else
19 if Property 4 then
20 Pattern Mode = Single Many

21 return Pattern Mode

37



3.3.3 Payload Distribution Detection

DNS Zone Analysis

Name servers play the main role during the lifetime of any DNS query. These servers

are capable of handling any DNS query and returning the corresponding responses,

which are taken from a zone file. In Section 3.3.2, we have seen four different methods,

that are used to distribute data through DNS. Because name servers are key players

in DNS, malicious networks need to have access to a name server for managing the

payload distribution. After the name server is configured to be authoritative for the

malicious domain name, botmasters prepare the zone file of the domain to hold all

attack payloads for the delivery through DNS.

In DNS zone analysis module, we analyze the behavior of domain names by ob-

serving DNS zone files. Within the zone file of each domain name, there are different

types of RRs. Each RR indicates specific services or operations associated with the

domain name. One of the powerful features of the pDNS database is the aggrega-

tion of how many times each record has been requested, called access count (ac). In

general, domain names, which are solely used for payload distribution, show different

behavior compared to regular domains. Regular domains receive queries for different

RRs. On the other hand, malicious domain names, which are only used for payload

distribution through DNS, are only accessed to receive attack payloads. Therefore,

they only focus on using specific RRs that are known to be used in payload distribu-

tion channels such as TXT records. Moreover, these domains do not heavily use the

RRs that are normally used by regular domain names, such as A, AAAA, and MX

38



resource records. By observing the RRs and their access counts, we can profile the

DNS zone activities of a domain name.

Extraction of DNS Zones: In payload distribution channels through DNS, name

servers are considered as the payload distributors. Since domain names can have mul-

tiple zones, we must recognize the responsible zones, which are associated with pay-

load distribution. This process can be formalized as an ordered set of labels L of a 2LD

D within a period of time t, where the leftmost label represents the lowest zone within

the DNS hierarchy. Dt = {L1, L2, . . . , Lm}, Li = {label1, label2, . . . , labeln−1, labeln},

where 1 ≤ i ≤ n, and m is the number of query and response packets that are

captured under that 2LD, and n is the number of labels in each query.

A query might have multiple sub-domain labels, which might point to sub-zones

under the same 2LD. In order to differentiate between a normal sub-domain and a

sub-zone, the module traverses the labels from 2LD to the leftmost label. For each

label, the NS resource record is requested to see whether that label is a sub-zone or

not. If a sub-domain label has an NS record, it is a sub-zone under that 2LD. In the

next step, the module profiles DNS zone activities of this sub-zone.

Profiling of DNS Zones: Understanding whether a sub-zone is used for payload

distribution purposes can be achieved by analyzing its RR activities. These activities

can be calculated as a function of access counts. By using the pDNS database, we

extract all accessed RRs and their access counts. PDNS is built in a way that it

counts the accesses to each RR for a certain period.

Let R = RA ∪RNS ∪ · · · ∪RTXT where RA = {rA | rA is an A record}, . . . , RNS =

{rNS | rNS is a NS record} be the set of all RR types that can be defined in a DNS

zone file, and P = {p | p ∈ (R \RNS ∪RCNAME)} is the set of all the RR types that

39



are commonly used by payload distribution channels and other uses too. Since the

TXT resource record is known to be the most suitable for payload distribution, we

define a set T = {rTXT | rTXT is a TXT record} that holds any TXT record in a

given zone.

For every RR type from sets P and T , the access count is retrieved from the

pDNS database. Then, these access counts are aggregated to determine the µ value

as formulated by Equation 3.2, which reflects the relation between the access ratios

of T and P records as an indicator of payload distribution activities.

µ =

n∑

i=0

acT

m∑

j=0

acP

(3.2)

where n and m are the numbers of RRs for T and P respectively. Also acT and

acP are access counts of each element in T and P respectively.

The Equation 3.2 provides a percentage value (0 ≤ µ ≤ 1) of using TXT RR.

When a domain name receives more access to RRs from P , it has a smaller µ value

than a payload distribution channel domain that receives access only to TXT records.

Payload Distribution Intensity Analysis

Our payload distribution detection is based on DNS zone activities as described in

Section 3.3.3. The Equation 3.2 provides the rating value of a domain name being

used as payload distribution channel. However, it gives an imprecise and uncertain

information about the intensity of the payload distribution channels. From an in-

vestigator perspective, detected domain names have to be prioritized based on their

behaviors to facilitate the investigation process. When a domain name is abused,

40



it is important to learn its maliciousness intensity or severity level in a descriptive

way. Fuzzy set theory can be used to transform the rating values to more descriptive

meanings by introducing the level of intensity of the payload distribution of a given

domain [91]. In Table 3.1, we have seven different levels of certainty, that are used

in the estimative probability problem [54]. In general, when we have k levels, the

parameters {p(L1), p(L1), · · · , p(Lk)} can be computed as a function of µ values in

Equation 3.2 according to fuzzy triangular membership function [91]. Let each level

Lt be a fuzzy subset, and each rating value µ is assigned to a membership grade

p(Li, µ) taking values in [0, 1], with p(Li, µ) = 0 corresponding to non-membership in

Li, 0 < p(Li, µ) < 1 to partial membership in Li, and p(Li, µ) = 1 to full membership

in Li.

Level Kent’s Estimative terms Probability
Very High (VH) Certain 100%

High (H) Almost Certain 93% (± 6%)
Medium to High (MH) Probable 75% (± 12%)

Medium (M) Chances About Even 50%(± 10%)
Low to Medium (LM) Probably Not 30%(± 10%)

Low (L) Almost Certainly Not 7%(± 5%)
Very Low (VL) Impossible 0

Table 3.1: Probability Value Scale [54]

3.4 Dataset Collection

Throughout our experiments, we utilize three datasets to analyze the problem from

different perspectives. Our datasets are a near-real time pDNS traffic, a pDNS

database, and a malware database.

41



Passive DNS: In our experimental results, we evaluate the system on a one-month

dataset, which spans between March 19, 2013 and April 19, 2013. According to the

system logs, the total number of packets processed by our system is around 40 million

packets with an average of about 1.3 million packets daily (Table 3.2).

Passive DNS Database: Our system also builds a pDNS database that stores all

the data coming from the pDNS traffic. This database recorded the pDNS traffic that

we utilize for profiling the DNS zone of domains.

Malware Database: We observe over one-year period of malware samples that

are provided by a major security vendor. We receive the malware feed on a daily

basis and then analyze each sample in a controlled environment to generate dynamic

behavioral analysis reports. In our analysis, we just consider malware samples that

conduct activities using the TXT RR for the DNS protocol. Table 3.2 shows some of

the statistics about the malware feed recorded between January 2012 and December

2012.

3.5 Experimental Results

In this section, we explain the experimental results of our system. We show that our

system can detect payload distribution channels in the pDNS traffic. The experimen-

tal results reveal long-running hidden domains, which are used by Morto worm to

distribute attack payloads. We also found that on contrary to the common knowl-

edge [65], some of these attack payloads are in clear text without any encoding and

encryption. This indicates that our system can detect these channels regardless of

the format of the distributed data.

42



Passive DNS Period 30 days

Number of DNS messages 20 Billion

Number of TXT records 40 Million

Malware database Period 1 Year

Number of malware samples 15 Million

Number of malware samples
that have TXT activities

18 Thousand

Table 3.2: Dataset Statistics

During experiments, we tested our system with a live pDNS traffic for 30 days

(Section 3.4). Domains that are accessed for TXT records are queued up in a time-

based window; we set the window to be one day. When the window expires, the

packets are fed to the query and response pattern module (Section 3.3.2). Once

the patterns for each domain is recognized, these packets are sent for the DNS zone

analysis (Section 3.3.3), to build the DNS zone profile for each zone. At the final

step, the information gathered on each zone is passed to the intensity analysis module

(Section 3.3.3), which uses a membership function to determine the level for each zone

to be a payload distribution channel.

We used a computer with i7-2600 3.4 GHz CPU and 16 GB of RAM. The system

performed well with near real-time analysis of the domains. The lookups to the

43



pDNS database did not create a significant overhead to the overall performance of

the system.

3.5.1 Query and Response Patterns

In the first step of our system, we determine the query and response patterns on the

captured traffic within one day. To evaluate the feasibility of each pattern to carry

out payload distribution channels, Figure 3.3 compares the average distinct message

counts from pDNS with the number of malware instances per pattern. Many-to-Many

pattern can be considered as the best candidate for distributing large volume of data,

while it was probed by small number of malware instances during the year of 2012.

This extensive payload retrieval scheme would easily alert IDSs [77]. On the other

hand, Single-to-Single pattern allows to carry small volume of data while maintaining

a low network footprint. By observing our malware samples, we found that most of

the malware instances used this pattern to retrieve the attack payloads. Because each

of these instances send a single query to receive the attack payload, their queries can

easily blend in the daily network traffic. Compared to other patterns, Single-to-Single

is the best candidate to establish a fully resilient channel in DNS. Single-to-Many

pattern requires to update the zone file to distribute different resource data for the

same query. This is technically difficult to maintain because of the caching behavior

of name servers. As we see in Figure 3.3, there is no single malware instances using

this pattern. Although Many-to-Single pattern has a single response to the different

queries like Single-to-Single pattern, it creates a large number of queries, that can be

also noticed by IDSs.

44



1

10

100

1000

10000

100000

Single‐to‐Single Many‐to‐Single Many‐to‐Many

Av. Distinct Messages Malware Instances

Figure 3.3: Average Number of Query and Response Messages within Single Window (1
Day)

As shown in Figure 3.3, Many-to-Many pattern is generating the most extensive

traffic compared with the other patterns. The high volume of data exchange can reveal

the name server, which is used as the payload provider. In order to hide this name

server, botmasters are using it only for the bootstrapping phase to initiate payload

distribution channels. The initial DNS query is directly made to a rogue name server

without traversing the DNS hierarchy. Therefore, the malware authors could use any

domain, even unresolvable domains. We found some instances of Feederbot botnet,

which used known legitimate domains such as yahoo.com. However this first query

is just the starting point of the payload distribution channel. In the first query, bot

sends some data in sub-domain labels that are used as a key derivation parameter [29].

The response for this query comes as encoded with Base64, yet not encrypted. In

this payload, the bot receives the domain name, that is considered to be the real

45



payload distribution channel domain, and an IP address of an open resolver to be

used. The open resolver is abused for hiding the name server which provides the

payload contents. Our observation confirms that open resolvers are often subject

to different kinds of abuses [27]. After the bootstrapping process is completed, bot

starts querying this domain to receive the attack payload in a sequential manner.

Unlike what has been reported in [3], Feederbot only uses the unresolvable domains

for bootstrapping process.

3.5.2 Payload Distribution Detection

When the query and response patterns of domain names are recognized, they are

inspected by the DNS zone analysis module. The access counts of each RR of these

domain names are gathered from the pDNS database. Equation 3.2 determines the

µ values of each domain being used as payload distribution channel based on the

access counts. During our experiments on the pDNS traffic, we have captured 2707

domains that have TXT resource record activities. Figure 3.4 shows the distribution

of µ values across these domains.

To validate our system, we observe our malware dataset, and pDNS database to

investigate the difference between payload distribution channels and regular domains.

As regular domains, we use the top 500 domains from Alexa top sites1, because they

are used for different services. By using our 1-year malware dataset, we extracte

malware domains, which are used for payload distribution. We retrieve the access

counts for all RRs of each domain from regular and malware domains. These access

counts are a good measure to understand the individual RR activity of any given

1http://www.alexa.com/topsites

46



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000

µ

Domains

Figure 3.4: Distribution of Rating Values of the Detected Domains

domain. In Figure 3.5, the distribution of the access counts for these RRs is given.

Domains from Alexa received DNS queries for different RRs. The reason for this could

be the fact that these domains utilize DNS for enabling access to different services.

On the contrary, malware domains received an extensive number of DNS queries for

TXT records. These records are used to distribute the payload as it is the most

suitable RR type within the protocol. We also investigate the access to the CNAME

records in malware domains. They are used to redirect between malicious domains

as botmasters maintain a network of malicious payload distribution channels.

When the system calculates µ values for all domains, it determines the intensity

level of payload distribution of each domain. This step of the detection is based on

the membership function, which was discussed in Section 3.3.3. The calculated µ

values are fed to this intensity analysis mechanism where each domain is mapped to

47



5
.3
1

0
.0
7

1
.0
0

5
1
.6
1

0
.0
9

4
2
.5
9

0
.0
1

0
.0
0

0
.0
0

6
3
.5
2

3
3
.3
0

3
.1
7

A AAAA MX NS TXT CNAME

A
c
c
e
s
s
 C
o
u
n
ts

Alexa Malware

Figure 3.5: Alexa and Malware Domains DNS Record Access Counts

seven different levels. As a proof of concept, we determined seven levels in compliance

with Kent’s Estimative Terms [54].

Filteration Steps: There are some of the legitimate use cases that can behave as

payload distribution channels. In fact, there are specifications that are using TXT

records to apply some security measure for mail servers such as SPF, and DKIM (see

Section 2.1.1). Since these specifications are designed for mail servers, the zone file

should reflect the existence of MX RRs. As shown in Figure 3.5, malicious domains

are not associated with any MX RRs. Therefore, these legitimate services can be

recognized using two different filtration steps: MX RR activity, and specifications

recognition.

The first filtration process takes each domain, and selects the most accessed TXT

RR by using the pDNS database. Then, we apply a regular expression in the TXT

record based on the defined syntax of specifications [5, 89] to determine any possible

48



32
14 9 6 3 2

49
31

14 16 9 7 6

120

4 1 2 1 0 0
29

0

100

200

300

400

500

600

700

VL L ML M MH H VH

D
o
m
a
in
s

Intensity level

Specifications Filtering MX Filtering Both Filtering Detected Domains

Figure 3.6: Effect of Filtration Mechanisms on the Detected Domains

specification string (e.g., SPF). In the second filtration process, we investigate the

activities of MX RRs. When a domain name is associated with any MX RR activities,

it is considered as non-payload distribution channel. In Figure 3.6, we show the

distribution of domains across different levels of intensity as well as the results of

filtration mechanisms. MX and specifications filtration mechanisms perform similar

to each other in every intensity level. Compared to the others, level 7 has the most

domains, which remained after applying both filtering mechanisms. Therefore, we

focus on level 7, which is labeled as Certain as explained in Table 3.1. In Figure 3.7,

the distinct domains that are detected as payload distribution channels are given in a

daily basis across one-month along with the performance of each filtration step. The

number of detected domains is 390 before any filtration is applied. However, some of

these domains might be accessed mainly to receive specifications related data. The

both filtration mechanism reduce the number of domains to one on average daily, and

49



0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

D
o
m
a
in
s

Days

Detected Domains Specifications Filtering MX Filtering Both Filtering

Figure 3.7: A Daily Observation of the VH Intensity Level with the Filtration.

we confirmed that the remaining domains are valid payload distribution channels as

discussed ins Section 3.2.2.

The Resilient Morto Domains: Morto is a malware family that targets the Re-

mote Desktop Protocol (RDP) to gain access to host machines. It is one of the

malware families that use DNS as a payload distribution channel [65]. During our

experiment, we detected domains that are being used by the Morto family. Morto

uses the Single-to-Single pattern where a static query is sent to the malware domain

to receive the encoded payload. In fact, it is known that it receives a Base64 encoded

and encrypted URL, which points to the second payload [65]. We noticed that Morto

domains also distribute IP addresses in clear text inside TXT records. A reverse

lookup to one of these IP addresses in the pDNS database reveals that it is shared

with other malicious domains. In Table 3.3, we give some statistics on the domains

that are used by Morto instances. As mentioned in Section 3.5.2, the malware au-

50



thors also linked different domains to each other through CNAME records to maintain

a malicious network. A simple investigation through the pDNS database reveals a

network of domain names from Morto botnet.

Number of detected Morto domains 3
Life span of these domains 1.3 years on average
Average of access counts of TXT records 4080392

Table 3.3: Statistics of Detected Morto Worm Domains

3.6 Limitations and Discussions

To the best of our knowledge, our system has several limitations. The first limitation

of our system is the inability to detect malware mimicking the DNS zone activities of

legitimate domain names. We use the fact that name servers of payload distribution

channels only receive requests for TXT records. If a domain is used for different

malicious activities (e.g., spam, phishing) as well as for payload distribution, then

it will be accessed for different RRs, e.g., A record for phishing scams. Then, our

detection method might consider this domain as non-payload distribution domain.

The second limitation is that our system relies on our observations from our mal-

ware database. The malware database is established with dynamic analysis reports,

which are generated in the sandbox for a limited time. It means that the dynamic

analysis process might not capture all DNS communications of malware families.

Therefore, we cannot know whether our system can detect all malicious payload dis-

tribution channels in DNS.

The third limitation is that our system is an offline detection mechanism which

can detect after a domain is visible for an epoch. It cannot detect the payload

51



distribution channels as they become online. So, the system cannot be used for real

time detection. However, it can detect them at the end of the epoch, which is one

day in our experimental setup.

The last limitation of our system comes from pDNS. Its replication [87] is a unique

way to collect the global DNS traffic by sensors. However, it has a shortcoming that

might affect our results. Malware might not use caching resolver of the network

and alternatively send the queries directly to an open resolver. In this case, the

traffic would not pass through the sensor, and would not be analyzed. While this

is a limitation of the pDNS replication mechanism, our system can detect payload

distribution channels within the range of the existing pDNS stream.

Detection Regardless of Syntax: Our results show that the system detects pay-

load distribution channels in DNS. As our method discover Morto domains: it also

detects legitimate payload distribution channels as discussed in Section 3.2.2. It indi-

cates that regardless of the syntax of the payload distribution channel, the DNS zone

activity metric is a strong feature to detect domains, which are used for these chan-

nels. If botmasters start using a syntax similar to the legitimate services to blend in

their traffic, they might not be detected by network monitors. However, our system

still detects them because it monitors the DNS zone activities of payload distribution

channels.

DNS Tunneling Detection: In the results of our experiments, we detected DNS

tunneling activities from a single domain (a DNS tunneling app for Android). As

our system is configured to monitor TXT records, it successfully detects any DNS

tunneling activities on TXT records. If the tunnel is established by using another

52



RR type, we expect that our system would still detect as the detection is not based

on the content of the RR, but the access counts of RRs.

Observations from Malware Database: In our malware dataset, we discover do-

main names that are used for payload distribution channels. The behavior of these

malware samples introduced different methods to retrieve the malicious content as

discussed in Section 3.2.2. One of the interesting ways is that they used indexed

queries to receive attack payload in multiple response packets. Due to the size re-

striction on TXT RRs, the payload is chunked into parts and each part is placed in

another TXT record. Bot clients start querying this series of packets in a sequential

manner until the last packet is received. Some of these payloads are chunked up to

thousands of packets. Surprisingly, this method is very similar to the patent from

Trend Micro [57]. However, our results showed that this method is not seen in the

pDNS anymore. There are two possible interpretations of not observing this behavior

in our dataset. First, botmasters realized the significant exposure of using this be-

havior, which generates a large number of messages, then they decided to stop using

it. Second, these domain names are directly resolved by their own name servers or

other open resolvers, which are not captured by our pDNS sensors.

3.7 Conclusion

In this work, we shed some light on the abuse of the DNS protocol by malware

for distributing attack payloads. We design a system that is able to characterize

and detect the payload distribution channels within the pDNS traffic. Our system

observes the DNS zone activities of a channel by gathering access counts of each RR

53



type, and determines the intensity of the payload distribution. By experimenting our

system on the pDNS traffic during one month, we show that it detects the resilient

malicious payload distribution channels, which were active more than 18 months. We

find that most of the malware instances are using a resilient pattern to retrieve the

attack payloads, because it can blend within the daily network traffic. Moreover,

our system is able to detect payload distribution channels regardless of their syntax

format.

54



Chapter 4

Passive DNS Database

This chapter describes our efforts on establishing a pDNS database. The design

of the database is influenced by DNSDB of Farsight Security Inc. [34] DNS based

analysis (for both research and investigation purposes) requires hands-on experience

with real DNS data logs. This type of studies are often done by using local network

DNS logs, however it is not enough to look at global trends in malicious activities.

It is important to analyze global DNS activities to understand and design defense

mechanisms against emerging threats, such as malicious payload distribution channels

in DNS (see Chapter 3). To achieve that, we need to have a historical database

of pDNS to correlate previous attacks with current ones to model the behaviors of

malicious communication channels as well as other security threats. Therefore, first

we will discuss the motivation behind this work. After that, we will describe the

database with its technical details. Then, we will introduce the technologies used in

this work, and the implementation details. Afterwards, the evaluation of the system

will be given. Finally, we will provide concluding remarks.

4.1 Introduction and Motivations

DNS is an important part the global Internet traffic as discussed in Section 2.1.1. More

than 250 million domains have been registered, and it is increasing every day [56].

55



The increasing use of DNS makes it a good vintage point for analyzing the global

Internet use as well as emerging security threats.

Parallel to the increasing use of DNS, there is an increasing interest in DNS based

threat analysis both in the academia and the industry. There is a significant shift to

DNS for detecting global botnet trends [6, 7, 9, 12, 60]. Probably, the main reason for

this is that botmasters have started to use domains rather than numerical addresses

of their C&C servers. It is not surprising as domain names are more flexible from a

botmaster’s perspective. If a domain is taken down, it can be replaced with another

domain, and in a few hours the C&C server would be back online. So, researchers

propose techniques to observe botnets in different layers of DNS [7, 8]. This new

trend in threat analysis makes it more difficult for botmasters to hide, and maintain

their malicious networks. DNS based web application security is a new trend in the

industry. It is a technique for defending websites against different types of threats,

such as Structured Query Language (SQL) injection, DDoS, and web spammers.

This defense mechanism becomes quite strong, even against targeted attacks. In the

Spamhaus incident (see Section 1.1), Cloudflare, a web security company, deployed

their DDoS protection systems at the DNS level to mitigate the biggest DDoS attack

in the history [72]. Furthermore, Cloudflare offers other types of security measures in

the DNS level.

It is clear that DNS is a good place to investigate and mitigate emerging threats,

however it comes with some challenges. Compared to other types of threat analysis,

DNS based threat analysis requires a different approach for logging the traffic. For

example, in spam analysis, the spam data is simply captured by spamtraps [74].

It does not matter whether the spamtrap sensors are placed near the spammers’s

56



geolocation. However, DNS data depends on where data capturing sensors are placed.

If the sensors are placed in a network, then the captured DNS data is limited to that

network, and it cannot be used for analyzing global trends in threats. So, sensors

should be placed in multiple networks, especially in ISP networks. Considering the

number of customers of an average ISP, capturing DNS traffic from ISPs definitely

provides a large dataset. Another challenge of DNS is the growing data size. Godaddy,

a well known web hosting company, deals with nearly 10 billion DNS queries per

day [62]. If we consider Godaddy as an ISP; when the data is aggregated from

multiple ISPs, it becomes challenging to process it.

Passive DNS comes into the play at this point. It is a strong DNS replication

method, which aims to mirror DNS traffic for further analysis. Passive DNS inher-

its the challenges of capturing DNS traffic, therefore it has to address positioning of

sensors, and an efficient solution for processing large captured datasets. It also needs

to be near real-time for detecting threats as they show up in DNS. Deploying sensors

in multiple networks, and collecting the captured data in a central data warehouse

for further processing is a good approach. It is already applied by Farsight Security,

Inc. [1] for SIE as discussed in Section 2.1.2. Their implementation includes a prepro-

cessing pipeline, which sanitizes the captured data. This initiative has many sensors

deployed in the US and Europe, and the collected DNS data is used in previous

research works [7, 12].

The motivation behind our project initially comes from the need of a pDNS

database in our work on detection of malicious payload channels in DNS. Also, there

are other on-going research work in our Computer Security Laboratory that can ben-

efit from a pDNS database. As mentioned in Section 1.3, after the completion of

57



writing this dissertation, another group from our lab has started working on the de-

sign and implementation of a pDNS database, which is based on a library (mtbl) [38]

developed by Farsight Security, Inc.

Passive DNS comes as a stream of data. For analysis, it should be stored in a

database in a way that it is efficient to query, and comprehensive to keep all data

from the pDNS stream. The database also has to be scalable for distributing the load

across multiple nodes without hassle. Initially, we deployed our database on a single

node, which receives the pDNS feed. It can cope with the speed of the pDNS stream,

while serving for queries without significant latency.

As a summary, the database provides following benefits:

1. Historical database based on pDNS: The database stores selected data

from the pDNS stream in a NoSQL database system. It allows to retrieve any

type of DNS related data.

2. Scalable, efficient solution to store massive amount of DNS data:

It is based on a scalable database system, which makes the database easy to

distribute across multiple nodes, e.g., a data center. Moreover, it is efficient

enough to be used for live pDNS analysis (see Section 3.3.3).

3. Easy to access database system: We provide an API and a web interface

access to the database. While the API provides a programmatic access to the

database, the web interface gives the same functionality, which the API offers,

with a user friendly interface.

58



4.2 Description

In this project, we address several requirements to accomplish for designing a fully

fledged pDNS database system.

1. Requirement 1: Easy access to the database: Interaction with the database

through programs, as well as a secure user interface.

2. Requirement 2: Efficient database schema: The database should store all

of the pDNS data in an efficient and compact way. It important to keep what

is needed to optimize the disk space usage.

3. Requirement 4: Easy to scale: Creating a cluster of database servers is

often cumbersome, and it requires complex configurations. In our case, we

cannot afford any halt in the system, because we have to process and log the

data with zero loss. The database system should handle the clustering details

without any degradation in write operations.

4. Requirement 3: Easy to maintain and cost efficient: Database systems

often require advanced optimization skills. The database should require min-

imum effort for maintenance. Also, we should find an open-source database

system for cost efficiency.

Initially, our first challenge is to analyze the pDNS stream channels, which are

described in Section 2.1.2. As each channel has advantages and disadvantages, we

need to reason our choice of channel. After choosing the right channel, we design

our database based on the format of that stream. The database schema also relies

59



on the type of the database system that we have selected. In this project, we use a

NoSQL database solution from Apache Software Foundation. We explain the reason-

ing behind using a NoSQL database as opposed to Relational Database Management

Systems (RDBMSs). Finally we discuss the ways of querying the database.

Our project is to design and implement a pDNS database that can be built on top

of a pDNS stream. In a pDNS system, it is expected to have a different snapshots of

the processed DNS data, such as channels discussed in Section 2.1.2. It is important

to choose the which state of the data to store in the database.

Advantages Disadvantages

The Input channel

• Raw data

• Flexible

• Duplicated data

• Cache poisoning data

The Output channel

• Sanitized data

• Access counts for RRs
• Limited time-series analysis

Table 4.1: Comparison between the Input and Output Channels

Although we might have different channels, we have to choose between input and

output channels as the remaining channels are only used to access to the internal

stages of the pDNS processing pipeline (see Figure 2.4). The input channel is the

entrance point of the pipeline, while output channel is the exit point. As seen in

Table 4.1, both channels have advantages and disadvantages. The input channel is the

first channel, and its output is raw data, which come from the capturing sensors. As

it is raw, it comes with duplications, and potentially consists of cache poisoning data,

which is the result of cache poisoning attacks on authoritative name servers. However,

it gives full flexibility to apply different approaches for building our database. As

60



opposed to the processing pipeline from SIE, the final output could be more suitable

for time series analysis. On the other hand, the output channel provides sanitized

data, and as seen in Table 4.2, it provides extra information on top of existing DNS

packet information1. Every RR name is processed in a window based system, in

which every new RR name is pushed into the queue for a period. During this period,

each time an existing RR name appears, its count is incremented. In this way, access

count for each RR name is determined. However, this approach causes an inaccuracy

for time series type of analysis. It is impossible to determine when each duplicating

packet showed up in pDNS, because the timestamp information of each packet is

overwritten by the next duplicating packet. Regardless of this fact, we choose the

output channel for building our pDNS database, as the data is filtered from cache

poisoning attacks as well as bailiwick is determined [30]. Considering the size of the

pDNS data, implementing same functionalities goes beyond the scope of this project.

As the database system, we use Apache Cassandra project2, which is a well-

established open source project. It is a key-value based database system, which

is very similar to flat file data structure. This new trend in database systems is

called NoSQL, which is basically free from the complex structure of RDBMSs. The

simplicity comes from the minimalistic organization of data. Each table corresponds

to a query, which makes primary keys more important for queries. Therefore, we have

to design our database schema according to the requirements of Cassandra.

As seen in Figures A.2 and A.3 in Appendix, our database schema is grouped

under rrset and rdata. The design of these schemas are heavily influenced by the

dnstable implementation from Farsight Security Inc. [37] Both table groups are also

1https://security.isc.org/NmsgType SIE dnsdedupe/
2http://cassandra.apache.org/

61



Field name Purpose

type the type of a packet based on its state in the pipeline

count
the access count for a packet. It is calculated during the
packet’s lifetime in the processing window

time first the time when a packet is first seen

time last the time when a packet is last seen

response ip
the IP address of the authoritative name server, on which
the sensor resides

rrname the RR name of a packet

rrtype the RR type of a packet

rrclass the RR class of a packet

rrttl the TTL value a packet

rdata the response data of a packet

bailiwick the DNS zone in which the rdata is given

Table 4.2: Data Fields in the Output Channel

grouped based on the format of their primary keys. This is the fundamental part

of our database design. We consider two types of queries to our database: left-hand

and right-hand wildcard queries as seen in Table 4.3. A left-hand side wildcard query

seeks to find all RR names under a given domain, e.g., *.google.com, and a right-

hand side wildcard query gets all RR names with a certain sub-domain, e.g., news.*.

To support both query types, we have two types of primary keys in our tables. We

take the RR name and reversed it for left-hand side queries. The original RR name

62



is used for right-hand side queries. Because Cassandra supports ordered keys, all

primary keys in tables are ordered. Therefore, it becomes possible to get a slice from

the table based on primary key range as seen in Table 4.3. It is important to mention

that ranging is only possible if primary keys are in hexadecimal format. In this way,

the query will be similar to getting numbers within a range, e.g., return numbers

between 154 and 189. Primary keys are also appended with extra information from

the DNS packet such as bailiwick, rrtype, and timestamp to make them unique to

avoid collision with other primary keys.

Query type Query result Primary key range

Left-hand side
*.google.com

sub-domains of the domain
news.google.com

maps.google.com
...

\x03com\x06google\x00
03636f6d06676f6f676c6500
...
\x03com\x06google\xff
03636f6d06676f6f676c65ff

Right-hand side
news.*

domains with the sub-domain
news.google.com

news.microsoft.com
...

\x04news\x00
046e65777300
...
\x04news\xff
046e657773ff

Table 4.3: Wildcard Queries (primary keys are in original padded format of RR names)

One of our requirements is to make the database accessible by different methods.

We provide two access methods: an API and a web interface as seen in Figure 4.1.

The first one is for querying the database directly from programs, the latter one is

to give a quick and visual access to database. The API should be easy to access, so

63



we use Hypertext Transfer Protocol Secure (HTTPS) requests. The parameters of

the request provide the options for the query, and an API key authorizes the request.

The web interface is useful when investigating an incident, its user-friendly and secure

(HTTPS) interface provides a fast access to the database.

 

Processing
Passive DNS 
Stream 

Web Interface 

Cassandra 

Instance 

Web Service 

Figure 4.1: Passive DNS Database Overview

4.3 Preliminaries

The pDNS database is a combination of existing open-source tools and libraries. As

a requirement of the project, we maintain the cost-efficiency without compromising

any functionality. In this section, we discuss the tools that we utilize to build the

database. The implementation is done by using Python. It is used in for both

building and querying the database. One of the main reasons to choose Python is

the availability of the libraries for this language. Finally, we use Apache Cassandra

as our database system, which is designed for fast read and writes.

We use different libraries for reading and writing. As seen in Figure 4.2, there is

a dependency between the libraries. We use the packet format nmsg [39], which is

designed and developed by Farsight Security, Inc. [1] It is built on top of the pcap

64



libpcap, libprotobuf‐c, libwdns, zlib, and libxs

libnmsg, sie‐nmsg

pynmsg pywdns

pycassa

web.py

Used for writing Used for reading

Figure 4.2: Libraries Used in this Project

format, so libpcap3 is required for parsing this packet format. As an improvement

over the time, Farsight Security, Inc. [1] adapted Google’s libprotobuf4 library for

transferring the data over the wire. Protocol buffers (libprotobuf) is a powerful

library, which is designed for Google’s internal communication systems. Its data

structure allows transferring data in a more compact way, which results performance

improvements compared to other libraries. Nmsg specifically relies on the C extension

of the library, which is libprotobuf-c. For de-serializing DNS packets, libwdns is

developed by Farsight Security, Inc. [42] Additionally, libnmsg depends on zlib5 and

libxs6 for decompressing and messaging purposes respectively. On top of libnmsg,

sie-nmsg library is required to parse dnsdedupe packet format. This is a specific

format for some channels in pDNS. Dnsdedupe format consists of the fields given in

Table 4.2 along with some extra operational fields. Since the implementation is in

Python, we use pywdns [41] and pynmsg [40], which are Python extensions of libwdns

3http://www.tcpdump.org/
4https://developers.google.com/protocol-buffers/
5http://www.zlib.net/
6https://github.com/crossroads-io/libxs

65



and libnmsg respectively. To interact with our Apache Cassandra instance, we use

a client library pycassa7, which is written for Python. Finally we use web.py8 for

developing the API as well as the web interface of our pDNS database system.

Figure 4.3: Cassandra read workload comparison with HBase and MongoDB [51]

As mentioned earlier, we decide to use an open-source NoSQL database solution

for this project. NoSQL is a new phenomenon among database systems. It promotes

the use of key-value based data structures for faster writing and reading. It is sim-

ilar using a flat file based storage mechanism, which is basically writing the data in

files. As opposed to writing sequentially to the disk, NoSQL databases introduce

intelligent algorithms for handling the data in the memory prior to flushing it to the

disk. This type of memory-based operations can also be done using SQL database

systems. However, NoSQL database systems differ from the architectural perspective.

7https://github.com/pycassa/pycassa
8http://webpy.org/

66



Figure 4.4: Cassandra write workload comparison with HBase and MongoDB [51]

The tables are organized according to the query, as opposed to relational databases.

Therefore, there is no need for joining tables, hence faster queries. They are a better

solution for data logging mechanisms, rather than complex web applications. For ex-

ample, a social network website would require a complex relation between tables, and

achieving this with a NoSQL table might not be feasible. For our project, Cassandra

was the best option compared to other NoSQL solutions [51]. From the scalability

point of view, it scales well across multiple nodes with an increasing performance

for both reading and writing operations proportional to the size of the cluster (see

Figure 4.3, 4.4).

67



4.4 Implementation

The implementation is considered in two folds: storing the pDNS data and querying

it from the database. The process of storing the data comes with some performance

challenges. Our pDNS streams constitute tremendous amount of data per second,

and writing it to the database requires well optimized processing steps. Reading data

from the database is reasonably less challenging compared to writing to the database.

It is based on a central querying logic, which is serving to the API and the web

interface.

4.4.1 Storing the data

Our mission is to implement a mechanism, which reads from a constant stream of

data, processes it, and finally stores it into a database. We chunk our implementation

into these three steps with the same order. First, we have to implement the logic that

will be hooked on the pDNS VLAN for reading the packets, as they come from the

socket. Each nmsg packet has to be parsed with libnmsg to extract the desired fields.

After this step, we need to process these fields to fit in our data structure. It requires

using libwdns for tackling DNS data. Finally we establish connections to our database

server for writing data.

In Figure 4.5, the flow of the storing process is given. We use IO object of pynmsg

for creating a reader on the channel. This reader maintains a constant read on the

channel, and passes the input to a callback function for further processing. This part

of the implementation is straightforward. In the callback function, packets are pushed

into a First In First Out (FIFO) queue. We only take nmsg packets with the type

68



 initial_cache queuePassive 
DNS 

Stream

write cache queue

Worker

Thread‐n
Worker

Thread‐2
Worker

Thread‐1 ...

Writer

Cassandra Node

Each worker thread takes the 
next item in the initial_cache 
queue.

Figure 4.5: Flow of the Writing Process

“EXPIRATION”. This information is used when DNS packets are processed through

SIE pDNS channels. When a packet shows up in the processing pipeline, it is pushed

into a queue as “INSERTION”, which means that the packet has been seen for the

first time. Finally, when the processing window for that packet expires, it is marked

as “EXPIRATION” [30]. Therefore, this packet is the final version of that particular

query, and we store this final version in our database. In our queue, these packets are

aligned for the multi-threaded preprocessing.

During the preprocessing of packets, we extract fields from them, and prepare the

field data for writing to the database. The main load of our program comes from

this step, therefore we distribute the tasks among multiple threads. At this step,

primary keys are composed, also RR name, RR type, RR class, and RR bailiwick

data are converted from padded hexadecimal format to string by using pywdns. RR

data packets are also prepared with corresponding primary keys. Also, reversing for

primary keys is only applied to RR data with RR type NS and CNAME. These RR

69



types carry their data only in FQDN format, and it enables running wildcard queries

for them. However, other RR types are not suitable for reversing their RR data. For

example, we cannot expect a wildcard query on IP addresses, which are stored in A

or AAAA RR types.

Parameter Value Purpose

initial cache size 4000
the size of the first queue, which stores
nmsg packets

write cache size 4000
the size of the second queue, which stores
preprocessed packets

flush size 50
the number of packets to be stored in mem-
ory prior to flushing to the disk

worker count 5 the number of threads for preprocessing

write sleep time 15
the number of seconds allowed Cassandra
for garbage collection

log freq seconds 30 logging frequency

Table 4.4: Configuration Parameters of the Writing Process

As seen in Figure 4.4, we use a single thread for writing to the database. The

reason of this approach is that we initially use a single node as our database server,

and we need to avoid potential locks caused by multiple write operations. After

adding more nodes to the cluster, we can have extra threads to increase the write

throughput.

70



4.4.2 Querying the database

Our pDNS database provides two interfaces for querying as seen in Figure 4.1. The

API is aimed to serve to queries directly from programs, especially for automatic

accesses. To query the database, a URL must be composed of the IP address of the

web server, which runs the API and the web interface scripts, along with the query

parameters. A request to this URL should be sent through HTTPS for a secure

connection to mitigate eavesdropping. Our goal is to maintain a similar functionality

between the API and the web interface, therefore we use the same set of parameters

for the web interface. These two interfaces return the same set of data for the same

parameters without any modification in the result set.

Table 4.5 describes query parameters. These parameters are heavily influenced

from the parameters of DNSDB of Farsight Security Inc. [35] By using these parame-

ters in queries, the database can be queried with simple HTTPS requests. The result

is returned in JavaScript Object Notation (JSON) format. This object notation for-

mat is similar to XML, which allows serializing the data for passing along the wire. It

also simplifies parsing the data with native Python libraries. As seen in Figure A.4,

a simple Python code snippet can be used to query the database. The ouput is sim-

ilar to the output of the pDNS database solution (DNSDB) developed by Farsight

Security, Inc. [35, 36]

The web interface is designed to be a simple search page with security measures.

It is designed with HTML and CSS to have a user-friendly interface. Initially a

welcome page welcomes the user for logging into the system. After verifying the user

credentials, the search page is presented. It provides the same parameters, as the

71



Parameter Value Purpose

search type rrset or rdata
Determines the type of the search whether
it is for RR name, or RR data.

input mode Name, IP, raw Determines the type of the keyword.

Keyword String value

Depending on keyword type, it can be a
wildcard query, a network IP space with
slash notation (e.g., 1.1.1.1/16), or raw
hexadecimal data.

rrtype A, AAA, etc.
Filters the query based on RR type of DNS
packets.

bailiwick FQDN Filters the query based on bailiwick data.

limit Positive integer value
Limits the number of results to be re-
turned, 0 returns all results.

Table 4.5: Query Parameters

API, in a search box, and the results will be presented in a table below the search

box.

4.5 Evaluation

The evaluation of our project is based on our requirements, which are the performance

of storing and querying the pDNS data. In the ideal scenario, we would expect a

similar benchmark results to Cassandra benchmark results. However, it is expected

that the processing of the pDNS data will add an extra overhead. The retrieval of the

data also requires some additional computation, which is also expected to affect the

72



benchmark results. The additional computation occurs due to the filtration of the

retrieved data. Because the database only accepts queries on primary keys, additional

filtering is applied on the retrieved data.

Node Specifications

CPU i7-2600 3.4 GHz

RAM 16 GB

OS Ubuntu 12.04 LTS

Java Oracle Java 1.7.0 45

Number of nodes 1

Project Configuration Default (see Table 4.4)

Cassandra Version 1.1.6

Cassandra partitioner org.apache.cassandra.dht.ByteOrderedPartitioner

Number of records 1M

Table 4.6: Evaluation Setup

The results of the evaluation is presented in Table 4.7. The official Cassandra

results [51] are tested on a similar node setup as seen in Table 4.6, therefore the

comparison with these results can reflect a true benchmark for the performance of our

system. As mentioned earlier, the comparison is aimed to indicate the overall overhead

of our system when the Cassandra results are subtracted. The read throughput of

our system is an expected result, because the data goes under extra processing after

it is retrieved from the database. The load of this process varies depending on the

73



Test
Our system
(rows/sec)

Apache Cassandra
(rows/sec)

Loss by Process overhead
(rows/sec)

Read 552.49 ± 23 624.31 71.82 ± 23

Write 19028.41 20692.26 1,663.85

Read
and
Update

409.21 ± 11 467.34 58.13 ± 11

Table 4.7: Throughput of our Project with the Official Benchmark Results of Cassandra

query, therefore a throughput range occurred between different query types. The

data is filtered according to the rrtype, and this filtration occurs on the data, which

is returned from the database. The write throughput is constant as every packet from

the pDNS channel is processed in the same way before it is written to the database.

The write producess overhead due to the preparation of the pDNS data to write into

the database. Finally, we also test the system concurrent read and update operations.

For this part of the evaluation, we update existing nodes while we query the database.

The system shows 58.13 ± 11 performance overhead compared to Cassandra, which

is the result of extra processing.

The overhead, which is caused by the processing of data, is an inevitable result

of the project. As this is expected, we do not consider the processing overhead as a

limitation of the system. We rather take these measurements as indicators to optimize

the processes to decrease the overhead. Also, Cassandra can compensate the overhead

by adding more nodes to the system (see Figure 4.3 and Figure 4.4).

74



4.6 Conclusion

In this chapter, we present the design and implementation of our pDNS database.

As DNS becomes a part of threat analysis more and more, pDNS is the ultimate

solution for replicating the global DNS traffic. We design a system that can match

with needs of an efficient, scalable pDNS database system, which is completely built

with open-source tools and systems. It is built on top of a pDNS data stream, and

stores all DNS data without any modification. It uses a key-value based NoSQL

database system, which is proven to handle constant read and writes, while scaling

across multiple nodes, even multiple clusters.

Although the evaluation in the testing environment shows promising results, we

have found that Cassandra has serious shortcomings. We experienced degradation

in the write process due to the internal housekeeping processes by Cassandra. As

a result of this problem, my colleagues in NCFTA has started implementing the

database using mtbl system [38] developed by Farsight Security, Inc.

75



Chapter 5

Conclusion and Future Work

Botnets keep evolving, and botmasters come up with new solutions to mitigate exist-

ing defense technologies. This endless game results novel security threats, and they

are often based on vulnerabilities in software systems. In this dissertation, we have

discussed a security vulnerability, which exists in DNS. It enables data transfer by

using DNS query and response packets, which go undetected, because the DNS traf-

fic is considered to be trustworthy by network administrators. The DNS traffic is

often unmonitored, and botmasters use this advantage of the protocol to send and

receive their attack payloads. We have found different types of malicious communi-

cation channels in DNS, and introduce a novel technique to detect them regardless

of the encryption state of the traffic. During our experiments, we found that there

are several long-running domains, which are used for malicious payload distribution

networks. We also found that some payloads are sent in clear text as opposed to what

is reported by previous works. As long as this vulnerability within the DNS protocol

is not fixed, malware families will keep exploiting it increasingly to establish resilient

malicious networks.

The correlation between existing and emerging threats require a comprehensive

analysis of historical datasets. In DNS based research, the importance of pDNS is

obvious. However, pDNS comes with its own challenges in terms of the amount of the

data. Especially, when it comes to storing the data in a database for further analysis.

76



In this dissertation, we propose a pDNS database architecture, and implement it to

be used for different types of DNS based research works. Our database system keeps

up with the speed of the pDNS stream without any significant degradation.

During our investigation on the malicious payload distribution channels in DNS,

we have discovered some research directions that can be explored as an extension to

the work presented in this dissertation.

1. Detection of multi-purpose malicious domains: Our proposed solution

might not be able to detect domains, which are used for different malicious

purposes. Our DNS zone based metrics can be extended with a semantic-aware

approach to investigate the traffic content by using some metrics proposed in

DNS tunnel detection studies.

2. Detection of rogue DNS resolvers: During our analysis, we noticed some

rogue open resolvers that are used for querying malicious domains. We believe

that these rogue resolvers are specifically chosen by botmasters, because they

are operated with loose security policies. These resolvers can be included as a

metric into our system for more accurate decision making process.

3. Flexible pDNS database architecture: Our pDNS database is scalable,

however it can be extended with another layer of database, which would allow

more flexible queries. Because we use a key-value based database solution, the

schema of the database is forced to be very simple. Therefore, queries are more

predetermined compared to queries in relational database systems.

77



Bibliography

[1] Security Information Exchange (SIE), Farsight Security Inc. https://www.

farsightsecurity.com.

[2] The role of DNS in botnet command & control. Technical report,

OpenDNS, 2012. http://info.opendns.com/rs/opendns/images/OpenDNS

SecurityWhitepaper-DNSRoleInBotnets.pdf.

[3] DNS for massive-scale command and control. IEEE Transactions on Dependable

and Secure Computing, 10(3):143–153, 2013.

[4] Maurizio Aiello, Alessio Merlo, and Gianluca Papaleo. Performance assessment

and analysis of DNS tunneling tool. Logic Journal of IGPL, 21(4):592–602, 2013.

[5] E. Allman, J. Callas, M. Delany, M. Libbey, J. Fenton, and M. Thomas. Do-

mainkeys identified mail (DKIM) signatures. RFC 4871, May 2007.

[6] Manos Antonakakis, David Dagon, Xiapu Luo, Roberto Perdisci, Wenke Lee,

and Justin Bellmor. A centralized monitoring infrastructure for improving DNS

security. In Recent Advances in Intrusion Detection (RAID ’10), volume 6307,

pages 18–37. Ottawa, Ontario, Canada, September 2010.

[7] Manos Antonakakis, Roberto Perdisci, David Dagon, Wenke Lee, and Nick Feam-

ster. Building a dynamic reputation system for DNS. In USENIX Security

Symposium, Washington, DC, USA, August 2010.

78



[8] Manos Antonakakis, Roberto Perdisci, Wenke Lee, Nikolaos Vasiloglou II, and

David Dagon. Detecting malware domains at the upper DNS hierarchy. In

USENIX Security Symposium, San Francisco, CA, USA, August 2011.

[9] Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou, Saeed

Abu-Nimeh, Wenke Lee, and David Dagon. From throw-away traffic to bots:

detecting the rise of DGA-based malware. In USENIX Security Symposium,

Bellevue, WA, USA, August 2012.

[10] Broderick Aquilino and et al. F-secure threat report H2. Technical report,

F-Secure, 2012. http://www.f-secure.com/static/doc/labs global/Research/

Threat Report H2 2012.pdf.

[11] Dušan Bernát. Domain name system as a memory and communication medium.

In SOFSEM 2008: Theory and Practice of Computer Science, volume 4910, pages

560–571. Springer, 2008.

[12] Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. EXPO-

SURE: Finding malicious domains using passive DNS analysis. In Network and

Distributed System Security Symposium (NDSS ’11), San Diego, California, USA,

February 2011.

[13] Hamad Binsalleeh, Thomas Ormerod, Amine Boukhtouta, Prosenjit Sinha, Amr

Youssef, Mourad Debbabi, and Lingyu Wang. On the analysis of the Zeus botnet

crimeware toolkit. In Conference on Privacy Security and Trust (PST ’10),

Ottawa, Ontario, Canada, August 2010.

79



[14] Kenton Born. Browser-based covert data exfiltration. In Annual Security Con-

ference, Las Vegas, NV, USA, April 2010.

[15] Kenton Born. Browser-based covert data exfiltration. In Black Hat, Las Vegas,

NV, USA, July 2010.

[16] Kenton Born and David Gustafson. Detecting DNS tunnels using character

frequency analysis. In Annual Security Conference, Las Vegas, NV, USA, April

2010.

[17] Kenton Born and David Gustafson. Ngviz: detecting DNS tunnels through n-

gram visualization and quantitative analysis. In Annual Workshop on Cyber

Security and Information Intelligence Research, Oak Ridge, Tennessee, USA,

April 2010.

[18] Seth Bromberger. DNS as a covert channel within protected networks.

Technical report, National Electronic Sector Cyber Security Organization,

2011. http://energy.gov/sites/prod/files/oeprod/DocumentsandMedia/DNS

Exfiltration 2011-01-01 v1.1.pdf.

[19] Patrick Butler, Kui Xu, and Danfeng Daphne Yao. Quantitatively analyzing

stealthy communication channels. In Conference on Applied Cryptography and

Network Security (ACNS ’11), Nerja, Spain, June 2011.

[20] Alper Caglayan, Mike Toothaker, Dan Drapeau, Dustin Burke, and Gerry Eaton.

Real-time detection of fast flux service networks. In Cybersecurity Applications

and Technology Conference for Homeland Security (CATCH ’09), Washington,

DC, USA, March 2009.

80



[21] Hyunsang Choi, Hanwoo Lee, Heejo Lee, and Hyogon Kim. Botnet detection

by monitoring group activities in DNS traffic. In Conference on Computer and

Information Technology (ICCIT ’07), Aizu-Wakamatsu, Fukushima, Japan, Oc-

tober 2007.

[22] Lucian Constantin. Malware increasingly uses DNS as command and control

channel to avoid detection, experts say. Published on February 29, 2012. Re-

trieved on August 1, 2013. http://www.networkworld.com/news/2012/022912-

malware-increasingly-uses-dns-as-256763.html.

[23] Luciana Costa and Roberta DAmico. Malware detection and prevention plat-

form: Telecom italia case study. In ISSE 2010 Securing Electronic Business

Processes, pages 203–213. Berlin, Germany, October 2011.

[24] David Dagon, Manos Antonakakis, Kevin Day, Xiapu Luo, Christopher P. Lee,

and Wenke Lee. Recursive DNS architectures and vulnerability implications. In

Network and Distributed System Security Symposium (NDSS ’09), San Diego,

CA, USA, February 2009.

[25] David Dagon, Manos Antonakakis, Paul Vixie, Tatuya Jinmei, and Wenke Lee.

Increased DNS forgery resistance through 0x20-bit encoding: security via leet

queries. In ACM Computer and Communications Security (CCS’08), Alexandria,

VA, USA, October 2008.

[26] David Dagon and Wenke Lee. Global internet monitoring using passive dns.

In Cybersecurity Applications and Technology Conference for Homeland Security

(CATCH ’09), Washington, DC, USA, March 2009.

81



[27] David Dagon, Niels Provos, Christopher P Lee, and Wenke Lee. Corrupted

DNS resolution paths: The rise of a malicious resolution authority. In Network

and Distributed System Security Symposium (NDSS ’08), San Diego, California,

USA, February 2008.

[28] Luca Deri, Lorenzo Luconi Trombacchi, Maurizio Martinelli, and Daniele Van-

nozzi. Towards a passive dns monitoring system. In Symposium on Applied

Computing (SAC ’12), Riva del Garda, Italy, December 2012.

[29] Christian J. Dietrich, Christian Rossow, Felix C. Freiling, Herbert Bos, Maarten

van Steen, and Norbert Pohlmann. On botnets that use DNS for command and

control. In European Conference on Computer Network Defense (EC2ND ’11),

pages 9–16, Gothenburg, Germany, September 2011.

[30] Robert Edmonds. SIE passive DNS architecture. Technical report, Farsight

Security Inc., 2012. https://archive.farsightsecurity.com/Passive DNS/passive-

dns-architecture.pdf.

[31] Wendy Ellens, Piotr uraniewski, Anna Sperotto, Harm Schotanus, Michel Mand-

jes, and Erik Meeuwissen. Flow-based detection of dns tunnels. In Emerging

Management Mechanisms for the Future Internet, volume 7943, pages 124–135.

Barcelona, Spain, June 2013.

[32] Nicolas Falliere and Eric Chien. Zeus: King of the bots. Technical report,

Symantec, 2009. http://www.symantec.com/content/en/us/enterprise/media/

security response/whitepapers/zeus king of bots.pdf.

82



[33] Greg Farnham. Detecting DNS tunneling, February 2013. http://www.sans.org/

reading room/whitepapers/dns/detecting-dns-tunneling 34152.

[34] Farsight Security Inc. DNSDB. https://www.dnsdb.info.

[35] Farsight Security Inc. DNSDB API. https://api.dnsdb.info/.

[36] Farsight Security Inc. DNSDB API access sript. https://raw.github.com/dnsdb/

dnsdb-query/master/dnsdb query.py.

[37] Farsight Security Inc. Dnstable. https://github.com/farsightsec/dnstable/blob/

master/man/dnstable-encoding.5.txt.

[38] Farsight Security Inc. Immutable sorted string table library (mtbl). https://

github.com/farsightsec/mtbl.

[39] Farsight Security Inc. Nmsg library. https://github.com/farsightsec/nmsg.

[40] Farsight Security Inc. Pynmsg library. https://github.com/farsightsec/pynmsg.

[41] Farsight Security Inc. Pywdns library. https://github.com/farsightsec/pywdns.

[42] Farsight Security Inc. Wdns library. https://github.com/farsightsec/wdns.

[43] Sean Gallagher. How the most massive botnet scam ever made millions for

estonian hackers. Published on November 10, 2011. Retrieved on August

1, 2013. http://arstechnica.com/tech-policy/2011/11/how-the-most-massive-

botnet-scam-ever-made-millions-for-estonian-hackers/.

[44] Francisco J. Gomez and Carlos Juan Diaz. Preventing use nameservers as mal-

ware distribution platform. Work in progress, January 2012. http://tools.ietf.

org/html/draft-cmd-prevent-malware-dns-distribute-00.html.

83



[45] John Gordon. Systems and methods for identifying a network. Patent No.

US8353007 B2, Filed Oct. 13th., 2009, Issued Jan. 8th., 2013, 2009.

[46] Shuang Hao, Nick Feamster, and Ramakant Pandrangi. Monitoring the initial

DNS behavior of malicious domains. In Conference on Internet measurement

conference (IMC ’11), Berlin, Germany, November 2011.

[47] Wesley Hardaker. Requirements for management of name servers for the DNS.

RFC 6168, May 2011.

[48] Thorsten Holz. A short visit to the bot zoo [malicious bots software]. IEEE

Security & Privacy, 3(3):76–79, 2005.

[49] Thorsten Holz, Christian Gorecki, Konrad Rieck, and Felix C. Freiling. Measur-

ing and detecting fast-flux service networks. In Network and Distributed System

Security Symposium (NDSS ’08), San Diego, CA, USA, February 2008.

[50] Thorsten Holz, Moritz Steiner, Frederic Dahl, Ernst Biersack, and Felix Freiling.

Measurements and mitigation of peer-to-peer-based botnets: a case study on

storm worm. In Usenix Workshop on Large-Scale Exploits and Emergent Threats

(LEET ’08), San Francisco, CA, USA, April 2008.

[51] Datastax Inc. Benchmarking top NoSQL databases, 2013. http://www.datastax.

com/resources/whitepapers/benchmarking-top-nosql-databases.

[52] Jian Jiang, Jinjin Liang, Kang Li, Jun Li, Haixin Duan, and Jianping Wu. Ghost

domain names: Revoked yet still resolvable. In Network and Distributed System

Security Symposium (NDSS ’12), San Diego, CA, USA, February 2012.

84



[53] Dan Kaminsky. Black Ops of DNS. In Black Hat Briefings, Las Vegas, NV, USA,

July 2004.

[54] Sherman Kent. Words of estimative probability. Studies in Intelligence, 8(4):49–

65, 1964.

[55] Ed M. Kucherawy. Domain-based message authentication, reporting and confor-

mance (DMARC), March 2013.

[56] Frederic Lardinois. Report: More than 250m domain names have now been

registered, almost half are .com and .net. Published on April 8, 2013. Retrieved

on August 1, 2013. http://techcrunch.com/2013/04/08/internet-passes-250m-

registered-top-level-domain-names/.

[57] Jianda Li, Bharath Kumar Chandrasekhar, and Kong Yew Chan. Updating of

malicious code patterns using public DNS servers. Patent No. US8171467 B1,

Filed Jul., 3th., 2007, Issued May, 1st., 2012, 2007.

[58] Samuel Marchai, Jérôme François, and Thomas Engel. Semantic based dns foren-

sics. In Workshop on Information Forensics and Security (WIFS ’12), Tenerife,

Spain, December 2012.

[59] S. Marchal, J. Francois, C. Wagner, R. State, A. Dulaunoy, T. Engel, and O. Fes-

tor. DNSSM: A large scale passive DNS security monitoring framework. In

Network Operations and Management Symposium (NOMS ’12), Maui, HI, USA,

April 2012.

85



[60] Samuel Marchal and Thomas Engel. Large scale DNS analysis. In Dependable

Networks and Services, volume 7279, pages 151–154. Luxembourg, Luxembourg,

June 2012.

[61] Alessio Merlo, Gianluca Papaleo, Stefano Veneziano, and Maurizio Aiello. A com-

parative performance evaluation of DNS tunneling tools. In Conference on Com-

putational Intelligence in Security for Information Systems (CISIS ’11), pages

84–91, Torremolinos-Málaga, Spain, June 2011.

[62] Rich Miller. How go daddy keeps 52 million domains running. Published on

April 17, 2012. Retrieved on August 1, 2013. http://www.datacenterknowledge.

com/archives/2012/04/17/how-go-daddy-keeps-52-million-domains-humming/.

[63] Paul Mockapetris. Domain names: concepts and facilities. RFC 1034, November

1987.

[64] Paul Mockapetris. Domain names: implementation and specification. RFC 1035,

November 1987.

[65] Cathal Mullaney. Morto worm sets a (DNS) record. Technical report, Symantec,

2011. http://www.symantec.com/connect/blogs/morto-worm-sets-dns-record.

[66] Jose Nazario and Thorsten Holz. As the net churns: Fast-flux botnet observa-

tions. In Conference on Malicious and Unwanted Software (MALWARE ’08),

Fairfax, VA, USA, October 2008.

[67] Lucas Nussbaum, Pierre Neyron, and Olivier Richard. On robust covert channels

inside DNS. In Information Security Conference (SEC ’09), volume 297, pages

51–62. Pafos, Cyprus, May 2009.

86



[68] Emanuele Passerini, Roberto Paleari, Lorenzo Martignoni, and Danilo Bruschi.

FluXOR: detecting and monitoring fast-flux service networks. In Detection of in-

trusions and malware, and vulnerability assessment (DIMVA ’08), volume 5137,

pages 186–206. Paris, France, July 2008.

[69] Vern Paxson, Mihai Christodorescu, Mobin Javed Josyula Rao, Reiner Sailer,

Douglas Schales, Marc Ph Stoecklin, Kurt Thomas Wietse Venema, and Nicholas

Weaver. Practical comprehensive bounds on surreptitious communication over

DNS. In USENIX Security Symposium, Washington, DC, USA, August 2013.

[70] Roberto Perdisci, Igino Corona, David Dago, and Wenke Lee. Detecting ma-

licious flux service networks through passive analysis of recursive DNS traces.

In Annual Computer Security Applications Conference (ACSAC ’09), Honolulu,

HI, USA, December 2009.

[71] Roberto Perdisci, Igino Corona, and Giorgio Giacinto. Early detection of mali-

cious flux networks via large-scale passive DNS traffic analysis. IEEE Transac-

tions on Dependable and Secure Computing, 9(5):714–726, 2012.

[72] Matthew Prince. The DDoS that almost broke the internet. Published on March

27, 2013. Retrieved on August 1, 2013. http://blog.cloudflare.com/the-ddos-

that-almost-broke-the-internet.

[73] Matthew Prince. The DDoS that knocked spamhaus offline (and how we

mitigated it). Published on March 20, 2013. Retrieved on August 1, 2013.

http://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho.

87



[74] Matthew B Prince, Benjamin M Dahl, Lee Holloway, Arthur M Keller, and

Eric Langheinrich. Understanding how spammers steal your e-mail address: An

analysis of the first six months of data from project honey pot. In Conference

on Email and Anti-Spam (CEAS ’05), Stanford University, July 2005.

[75] Cheng Qia, Xiaojun Chenb, Cui Xud, Jinqiao Shia, and Peipeng Liub. A bigram

based real time DNS tunnel detection approach. 17:852–860, May 2013.

[76] Daan Raman, Bjorn De Sutter, Bart Coppens, Stijn Volckaert, Koen De,

Pieter Danhieux Bosschere, and Erik Van Buggenhout. DNS tunneling for net-

work penetration. In Conference on Information Security and Cryptology (ICISC

’13), volume 7839, pages 55–77. Seoul, Korea, November 2012.

[77] Rod Rasmussen and Paul Vixie. Surveying the DNS threat landscape. Technical

report, Internet Identity, 2013. http://www.internetidentity.com/white-papers/.

[78] Michael C. Richardson and DH Redelmeier. Opportunistic encryption using the

internet key exchange (IKE). RFC 4322, December 2005.

[79] Rich Rosenbaum. Using the domain name system to store arbitrary string at-

tributes. RFC 1464, May 1993.

[80] William Salusky and Robert Danford. Know your enemy: Fast-flux service net-

works. http://www.honeynet.org/papers/ff/.

[81] William Yurcik Samuel Patton and David Doss. An achilles heel in signature-

based IDS: Squealing false positives in SNORT. In Symposium on Recent Ad-

vances in Intrusion Detection (RAID 01), Davis, CA, USA, October 2001.

88



[82] Ed Skoudis. The six most dangerous new attack techniques and what’s coming

next? In RSA Conference (RSA ’12), San Francisco, CA, USA, February 2012.

[83] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert, Martin Szyd-

lowski, Richard Kemmerer, Christopher Kruegel, and Giovanni Vigna. Your

botnet is my botnet: analysis of a botnet takeover. In Conference on Computer

and communications security (CCS ’09), Chicago, IL, USA, November 2009.

[84] Tom van Leijenhorst, Darryn Lowe, and KW Chin. On the viability and perfor-

mance of DNS tunneling. In Conference on Information Technology and Appli-

cations (ICITA ’08), Cairns, Queensland, Australia, June 2008.

[85] Paul Vixie. Extension mechanisms for DNS (EDNS0). RFC 2671, August 1999.

[86] Paul Vixie and Jun Murai. NCAP - distributed network capture with shared

analysis. Information and Media Technologies, 6(1):241–251, 2011.

[87] Florian Weimer. Passive DNS replication. In 17th FIRST Conference on Com-

puter Security Incident, Singapore, June 2005.

[88] Lance Whitney. FBI kills dnschanger network, but how many will

be affected? Published on July 9, 2012. Retrieved on August

1, 2013. http://news.cnet.com/8301-1009 3-57468436-83/fbi-kills-dnschanger-

network-but-how-many-will-be-affected/.

[89] M. Wong and Wayne Schlitt. Sender policy framework (SPF) for authorizing use

of domains in e-mail, version 1. RFC 4408, April 2006.

[90] Sandeep Yadav, Ashwath Kumar Krishna Reddy, AL Reddy, and Supranamaya

Ranjan. Detecting algorithmically generated malicious domain names. In Con-

89



ference on Internet measurement (IMC ’10), Melbourne, Australia, November

2010.

[91] Lotfi Asker Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets

and Systems, 1(1):3–28, 1978.

[92] Bojan Zdrnja, Nevil Brownlee, and Duane Wessels. Passive monitoring of DNS

anomalies. In Detection of intrusions and malware, and vulnerability assessment

(DIMVA ’07), volume 4579, pages 129–139. Lucerne, Switzerland, July 2007.

90



Appendix A

Description: A zone file is used to manage the RRs in a nameserver.

$ORIGIN example.com.
$TTL 86400
@ IN SOA ns1.example.com. hostmaster.example.com. (

2003021106 ; serial
10800      ; refresh after 6 hours
3600       ; retry after 1 hour
604800     ; expire after 1 week
86400 )    ; minimum TTL of 1 day

IN NS ns1.example.com.
IN NS ns2.example.com.

ns1 IN A 10.0.1.12
ns2 IN A 10.0.1.13
; name TTL class rrtype rdata
www 3600 IN A 10.0.1.10
remote 3600 IN A 10.0.1.11
otherservices 3600 IN A 10.0.1.15
ftp 3600 IN CNAME remote.example.com.
* 3600 IN CNAME otherservices.example.com.
;

Figure A.1: Simple Zone File

91



Description: The schema of rrset and rrset reversed tables in our pDNS database

project. These tables are used for searching over the rrname field.

rrset rrset_reversed

rrname+rrtype+

reversed_bailiwick+rdata+

timestamp

HEXPK

rrname STR

time_last LONG

bailiwick STR

rrtype STR

rrclass STR

rdata STR

count STR

time_first LONG

timestamp LONG

reversed_rrname+rrtype+

reversed_bailiwick+rdata+

timestamp

HEXPK

rrname+rrtype+

reversed_bailiwick+rdata+

timestamp

HEX

timestamp LONG

Figure A.2: The Database Schema: RR Set Tables (+ stands for string concatenation)

92



Description: The schema of rdata and rdata reversed tables in our pDNS database

project. These tables are used for searching over the rdata field.

rdata rdata_reversed

rdata+rrtype+

reversed_rrname+

timestamp

HEXPK

rrname STR

time_last LONG

bailiwick STR

rrtype STR

rrclass STR

rdata STR

count STR

time_first LONG

timestamp LONG

reversed_rdata+rrtype+

reversed_rrname+

timestamp

HEXPK

rdata+rrtype+

reversed_rrname+

timestamp

HEX

timestamp LONG

Figure A.3: The Database Schema: RR Data Tables (+ stands for string concatenation)

93



Description: A sample python script for querying our pDNS database. It uses the

API of our system through HTTPS, and the result comes in JSON format.

Figure A.4: Sample Query by Using the API

94


	List of Figures
	List of Tables
	List of Equations
	List of Acronyms
	Introduction
	Motivation
	Problem Statement
	Contributions
	Structure

	Background and Related Work
	Background
	Domain Name System
	Passive DNS

	Related Work
	DNS Abuses
	Passive DNS Analysis


	Malicious Payload Distribution Channels in DNS
	Introduction
	Background
	Payload Distribution via the DNS Hierarchy
	Use Cases of Payload Distribution

	System Description
	Overview
	Query and Response Patterns
	Payload Distribution Detection

	Dataset Collection
	Experimental Results
	Query and Response Patterns
	Payload Distribution Detection

	Limitations and Discussions
	Conclusion

	Passive DNS Database
	Introduction and Motivations
	Description
	Preliminaries
	Implementation
	Storing the data
	Querying the database

	Evaluation
	Conclusion

	Conclusion and Future Work
	Bibliography
	Appendix 

