
MEASURING THE LEAKAGE AND EXPLOITABILITY

OF AUTHENTICATION SECRETS IN SUPER-APPS: THE

WECHAT CASE

SUPRAJA BASKARAN

A THESIS

IN

THE DEPARTMENT OF

CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE

IN INFORMATION SYSTEMS SECURITY

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

OCTOBER 2023

© SUPRAJA BASKARAN, 2023

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Supraja Baskaran

Entitled: Measuring the Leakage and Exploitability of Authentication
Secrets in Super-apps: The WeChat Case

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science
in Information Systems Security

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Dr. Chadi Assi Chair

Dr. Mohammad Mannan Supervisor

Dr. Amr Youssef Supervisor

Dr. Chadi Assi Examiner

Dr. Nizar Bouguila Examiner

Approved by
Dr. Jun Yan, Graduate Program Director

October 30, 2023

Dr. Mourad Debbabi, Dean

Gina Cody School of Engineering and Computer Science

ABSTRACT

Measuring the Leakage and Exploitability of Authentication Secrets in

Super-apps: The WeChat Case

Supraja Baskaran

Super-apps such as WeChat and Baidu host millions of mini-apps, which are very pop-

ular among users and developers because of the mini-apps’ convenience, lightweight, ease

of sharing, and not requiring explicit installation. Such ecosystems involve several entities,

such as the super-app and mini-app clients, the super-app backend server, the mini-app de-

veloper server, and other hosting platforms and services used by the mini-app developer. To

support various user-level functionalities, these components must authenticate each other,

which is different from regular user authentication to the super-app platform. In this thesis,

we explore the mini-app to super-app authentication problem, where mini-app code gets

authenticated to access super-app services on the developer’s behalf.

We conduct a large-scale measurement of developers’ insecure practices leading to

mini-app to super-app authentication flaws, among which hard-coding developer secrets

for such authentication is a major contributor. We also analyze the exploitability and secu-

rity consequences of these authentication flaws by examining individual super-app server-

side APIs. We develop an analysis framework for measuring such authentication flaws,

iii

and primarily analyze 110,993 WeChat mini-apps, and 10,000 Baidu mini-apps (two of

the most prominent super-app platforms), along with a few more datasets to test the evo-

lution of developer practices and platform security enforcements over time. We found a

large number of WeChat mini-apps (36,425, 32.8%) and a few Baidu mini-apps (112) leak

their developer secrets, which can cause severe security and privacy problems for the users

and developers of mini-apps. A network attacker who does not even have an account on

the super-app platform, can effectively take down a mini-app, send malicious and phishing

links to users, and access sensitive information of the mini-app developer and its users. We

responsibly disclosed our findings and also put forward potential directions that could be

considered to alleviate/eliminate the root causes of these authentication flaws.

iv

Acknowledgments

I would like to thank my supervisors, Dr. Mohammad Mannan and Dr. Amr Youssef,

for their constant support and guidance throughout this project. This project came to life

and became a success because of their knowledgeable inputs and experience. I would also

like to express my gratitude to our collaborator, Dr. Lianying Zhao of the Carleton Uni-

versity, for providing his expert knowledge, for steering our research to its current state,

and spending time with us in order to solve technical issues with our project. I feel im-

mensely grateful for their patience, motivation, enthusiasm, and immense knowledge. I am

incredibly lucky to be able to work under their close guidance as they inspired me with

bright ideas, helpful comments, suggestions, and insights which have contributed to the

improvement of this work.

I want to express my thanks to my peers in the Madiba Security Research Group for

offering their knowledge and experience and being there for me on rough days. I learned

a lot from everyone, especially Sajjad Pourali, Rohan Pagey, Bhaskar Tejaswi, and Xiufen

Yu. I am humbled to have had the opportunity to work with them. I am deeply thankful to

the CIISE professors for enabling a positive learning atmosphere that kindled my interest in

the various aspects of systems security. I am immensely grateful, as I was fortunate enough

v

to receive substantial financial assistance from my supervisors and Concordia University.

Finally, I would like to express my gratitude to my family and friends. This journey

would not have been possible without their encouragement and support. I also wish to

convey my special thanks to one of my close friends, Mr. Vikram Babu Rajendran, who

shared his knowledge and experience, and had me motivated throughout the course.

vi

Contents

List of Figures xi

List of Tables xi

List of Acronyms xii

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 2

1.3 Problem Statement . 2

1.4 Summary of Our Approach . 4

1.5 Contributions . 5

1.6 Thesis Organization . 7

1.7 Publication . 8

2 Background 9

2.1 Basic Terminology . 9

2.2 Authentication Secret leakage problem . 15

vii

2.3 Objective . 16

2.4 Threat Model . 16

3 Related Work 20

3.1 Basic study on mini-apps . 20

3.2 Security analysis on mini-apps . 21

3.3 Identifying hard-coded secrets . 22

4 Methodology 24

4.1 Methodology Overview . 25

4.2 Detection of hard-coded secrets . 25

4.3 Preparing the list of server-side APIs . 27

4.4 Obtaining the access token and the presence of IP

whitelisting . 30

4.5 Testing the server-side APIs . 31

5 Measurements 33

5.1 Datasets . 33

5.2 Measurement Results . 35

5.2.1 Insecure Development Practices 35

5.2.2 Unauthorized Invocation of WeChat Server-side APIs 37

5.2.3 Unauthorized Invocation of Baidu Server-side APIs 43

5.2.4 CVSS Scores . 44

5.2.5 Testing dangerous server-side APIs with our own mini-app 44

viii

5.3 Temporal Comparison . 45

5.3.1 Prevalence over time . 46

5.3.2 Same-mini-app comparison . 46

5.4 Implementation . 48

5.5 Efficiency . 48

5.6 Effectiveness . 49

6 Security Consequences 52

6.1 Consequences from Server-side APIs . 52

6.1.1 Authentication bypass and entity impersonation 53

6.1.2 Reading mini-app data . 54

6.1.3 Mini-app data tampering . 54

6.1.4 Resource exhaustion attacks . 55

6.1.5 Sending arbitrary messages and malicious redirects 55

6.2 Consequences from Cloud Functions . 56

7 Conclusion and Future Works 59

7.1 Key takeaways . 59

7.1.1 Root cause analysis . 59

7.1.2 Comparing WeChat and Baidu with other super-app platforms . . . 61

7.1.3 Mini-app to developer server authentication 63

7.2 Recommendations . 63

7.2.1 Replacing the developer server with cloud features 63

ix

7.2.2 Mandating IP whitelisting . 64

7.2.3 Disallowing app secret hard-coding 64

7.2.4 Disallowing server-side API invocation from mini-apps 65

7.2.5 Switching to super-app bound dynamic secrets 65

7.3 Limitations . 66

7.4 Disclosure and Ethical considerations . 66

7.5 Future work . 68

Bibliography 69

A Analysis results with DATASET 3 78

x

List of Figures

1 Overview of the recommended API communication in WeChat Mini-apps. . 10

2 WeChat Code2Session - Login API. 14

3 Example scenario of an attacker making use of the hard-coded app secrets,

and successfully accessing WeChat’s server-side APIs. 18

4 Overview of our analysis methodology for WeChat and Baidu mini-apps. . 26

5 Example code snippet of a WeChat mini-app using server-side API calls in

the code with hard-coded secret . 60

6 An example of a WeChat mini-app calling a developer server API for

WeChat login with a hard-coded secret that is passed from the mini-app. . . 61

xi

List of Tables

1 List of Get and Modify Baidu server-side APIs evaluated in our measure-
ment study. 28

2 List of get and modify WeChat server-side APIs evaluated in our measure-
ment. 29

3 WeChat (DATASET 1 and DATASET 3) and Baidu (DATASET 2) mini-
app datasets used in our measurement. 35

4 WeChat mini-apps with the direct invocation of server-side APIs 37

5 Statistics of unauthorized callable WeChat (DATASET1) and Baidu (DATASET2)
server-side APIs, including their required parameters. Items marked with
* denote Baidu APIs (at the lower part of the table). [A]: Read Mini-app
Data; [B]: Send Arbitrary Messages; [C]: Data Tampering; [D]: Malicious
Redirects; [E]: Resource Exhaustion; AT: Access Token; The checkmark
denotes the possibility of the attack using the corresponding server-side
API. Impact: the impact of the attacker’s invocation of the API on a mini-
app and its users — determined based on the CVSS calculator (see 5.2.4).

. 51

6 Overview of identified security consequences. 58

7 Statistics of unauthorized callable WeChat server-side APIs for DATASET3.
. 79

xii

Chapter 1

Introduction

1.1 Overview

Full-featured apps such as WeChat [48] and Baidu [53], with a monthly user base of over

one billion [1, 25], have created an ecosystem to accommodate payments, media, online

stores, developers, etc. Such popularity and self-contained ecosystem have enabled them

to become “super-apps”, serving as the hosting platform of millions of mini-apps (also

known as mini-programs). Mini-apps, together with their super-apps, are seeing increasing

demands in different countries because of their convenience, light weight, ease of sharing

and no need to install. In addition, mini-apps do not need a custom backend server from

developers, but use a well-constructed set of APIs provided by their super-app to allow

straightforward access to backend data and system resources that are provided by the super-

app platforms.

1

Unsurprisingly, security and privacy issues also start to surface in these super-app plat-

forms, e.g., users’ PII (name, national ID, date of birth, and facial data) collection by

WeChat mini-apps [31]. More extensive security-focused work in this domain includes

(details in Sec. 3): analysis of mini-app permission models [56], identity confusion at-

tacks [57], and cross mini-app request forgery attacks [55].

1.2 Motivation

In contrast to existing work, we focus on the mini-app to super-app authentication prob-

lem, i.e., a mini-app proving to the super-app server that it is the mini-app (on behalf of its

developer) it claims to be. This is complicated by several factors, including: lack of a hu-

man user presenting secrets at the time of authentication (hence the need for somewhere to

store the mini-app to super-app authentication secret), mini-app developers not following

security guidelines from super-app platforms, failure of super-app platforms to enforce nec-

essary security restrictions, multiple entities being involved in a super-app ecosystem (e.g.,

mini-app client, super-app server-side APIs, cloud functions and data storage provided by

a super-app server, mini-app developer server), which also authenticate each other–either

explicitly or implicitly.

1.3 Problem Statement

A common way for the super-app to authenticate a mini-app is to use app secrets. Accord-

ing to the WeChat documentation [47], an app secret is specific to a developer account,

2

and it is used to authenticate any part of the mini-app (representing the developer) to the

super-app’s server. Therefore, the app secret should be treated as a sensitive piece of data

and should not be exposed (e.g., in the mini-app source code). Due to the absence of a

human user in such authentication scenarios, app secrets have to be stored instead of being

entered by a user, so, what makes a difference is where to store them. WeChat expects

mini-apps to offload such a burden to the developer’s server which stores app secrets and

performs necessary communication with the super-app server, i.e., not to hard-code in the

mini-app code. For example, in the case of WeChat mini-apps, the mini-app packages can

be extracted from a rooted/jail-broken device, or using the PC client, with common reverse-

engineering techniques without any special privilege [9] and the app secrets, if hard-coded,

can be easily obtained by anyone. If the developers still use such hard-coding, since the

super-app server has complete control over the super-app ecosystem, it can easily spot such

hard-coding and prevent it either before releasing a mini-app or at run-time. Our work is

then motivated by the observation that it is not the case in reality.

When such mini-app to super-app authentication is compromised due to hard-coded app

secrets, one can intuitively imagine how things may go wrong afterwards, e.g., the attacker

will be able to impersonate the legitimate mini-app (developer) and manipulate/abuse its

resources (e.g., images or order info). To better understand this problem, we examine how

app secrets are used to achieve the authentication: it is the super-app server that authen-

ticates a remote party claiming to be the mini-app and provides subsequent services all

through a set of exposed APIs over the network [40]. Therefore, these APIs eventually

become the target of the authentication compromise, i.e., whether they can be invoked in

3

an unauthorized manner. The super-app platforms often have certain security guidelines

to ensure proper mini-app to super-app authentication. For instance, WeChat discourages

having app secrets in the mini-app, recommends the use of IP address whitelisting for such

APIs (not allowing calls from non-listed addresses, configured at the developer portal), and

disallows directly calling such APIs from within the mini-app (as opposed to doing it from

the developer’s server) [47]. Still, enforcement of these guidelines remains a question,

leading to insecure development practices.

The mini-app to super-app authentication mechanisms vary across super-app platforms.

For example, Douyin [7] (the Chinese version of Tiktok[8]), uses a similar authentication

technique like WeChat and Baidu. In contrast Alipay [2] employs a dynamic authorization

token for the generation of access token which involves no static secrets, thus providing

a better authentication with the super-app. Our analysis targets major popular super-app

ecosystems that have such authentication issues, and primarily focuses on WeChat as it is

the largest among these platforms in terms of mini-app count [25].

1.4 Summary of Our Approach

Our objective is to measure the extent to which the aforementioned insecure mini-app de-

velopment practices are found along the timeline of recent years (assuming the awareness

is improving), and how such practices could have led to potential unauthorized calls to the

super-app server APIs. We also explore the security consequences of such calls in the super-

app ecosystem, e.g., business/personal resources in various application scenarios. To do so,

4

we develop an analysis framework that automatically detects app secrets in the mini-app’s

code through static analysis and verifies if authentication bypass is possible to call unau-

thorized super-app server APIs, confirming the validity of the identified secrets and the lack

of IP whitelisting. For ethical reasons, we do not make calls to all the super-app server-side

APIs, but instead, divide them into Get (can only view data) and Modify (can modify/delete

data) APIs. We automatically make calls to only the necessary Get APIs, which help us

get the required parameters to perform a “callability” analysis of Modify APIs. Also, we

analyze and categorize the security consequences of the unauthorized super-app server-side

API access and shed light on the ways forward for improvement.

1.5 Contributions

Summary of our contributions and notable findings are as follows:

1. We examine the mini-app to super-app authentication problem caused by insecure

development practices and the weak security design and enforcement from the super-

apps, especially secret mishandling in WeChat and Baidu, two leading super-app

providers. The identified issues eventually lead to unauthorized super-app server-

side API calls by any network attacker, allowing access to various mini-app-owned

resources. Our methodology is designed to facilitate automated analysis of mini-

apps from super-app platforms that have a similar mini-app directory structure (like

WeChat [50] and Baidu [4]), and use secret-based mini-app authentication.

2. We perform an automated large-scale measurement of the extent of such insecure

5

practices in WeChat and Baidu. Out of 110,993 WeChat mini-apps that we could suc-

cessfully decrypt and unpack (from a total of 115,392, crawled in 2021) and 10,000

Baidu mini-apps, we found a large number of WeChat mini-apps (36,425, 32.8%)

and a few Baidu mini-apps (112) leak their developer secrets, which can cause se-

vere authentication issues. The use of IP whitelisting, a WeChat security feature,

which could restrict exploitation of such secret exposures, is also very limited–only

33 out of 110,993 mini-apps have enabled it (7 mini-apps with app secret). We also

automatically check data leakage through the available Get APIs, and callability of

Modify APIs that can directly interfere with a mini-app functionality. We test the

effects of dangerous Modify APIs only on our own mini-app.

3. From our responsible disclosure, we learned that WeChat is aware of app secret hard-

coding (independent of our reporting), and has enforced a new requirement that such

mini-apps are disallowed (which we also confirmed by submitting a new mini-app

with hard-coded app secret–it was rejected). To check the effectiveness of this new

requirement, and to see how developer behaviours have evolved over the years, we

performed a few additional measurements. From 9,824 mini-apps crawled in Feb.

2023, 2,572 (26.2%) have valid app secrets, and from the 36,425 mini-apps (crawled

in 2021, with valid app secrets), 36,293 (99.6%) still have valid app secrets—making

recent enforcement by WeChat largely ineffective against existing vulnerable mini-

apps (which were made public before Mar. 2023).

4. We conduct an in-depth attack feasibility analysis for individual APIs and mini-apps,

6

and categorize the security consequences of such attacks. The consequences vary

a lot with the semantics of the involved APIs, the configuration and functions of

individual mini-apps, and several types of consequences are high-impact and affect

a large number of mini-apps.

5. We discuss root causes of the authentication flaws we identified, and suggest several

recommendations for design and enforcement considerations. We will make our tool

available to any super-app platforms, who can identify and measure security conse-

quences for different apps and take appropriate mitigating actions.

1.6 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides an overview of

background information and relevant work, containing the description of various studies

on the mini-apps and other findings on security and privacy vulnerabilities present in the

super-app-mini-app ecosystems; previous studies about detecting the hard-coded secrets in

the source code repositories. In Chapter 3, we describe the methodology adopted to identify

the vulnerable mini-app, starting from the detection of hard-coded app secrets, preparing

the list of server-side APIs to test the mini-apps, process of obtaining the access token

and identifying the presence of IP whitelisting for the mini-apps, and the actual testing of

server-side APIs. In Chapter 4, we first discuss the process of collection and categorization

of the dataset for our experiment, followed by the results of running our experiments on

these collected mini-apps; additionally, we describe the testing of dangerous server-side

7

APIs with our own mini-apps. In Chapter 5, we describe the security consequences that we

observed from the server-side APIs and from the cloud functions.

Finally, in Chapter 6, we present our conclusions and discuss the key takeaways from

the research; further we present the mitigation steps for the identified vulnerability; we

outline the ethical considerations of our research along with the limitations and future work.

1.7 Publication

The following publication [6] resulted from the research work performed during my mas-

ter’s program. Most of the work presented in this thesis has been peer-reviewed and ac-

cepted in the first article.

• Supraja Baskaran, Lianying Zhao, Mohammad Mannan, Amr Youssef. Measuring

the Leakage and Exploitability of Authentication Secrets in Super-apps: The WeChat

Case. Symposium on Research in Attacks, Intrusions and Defenses (RAID 2023),

Oct 16 - 18, 2023, Hong Kong (Acceptance rate 50/213).

8

Chapter 2

Background

In this section, we begin by introducing key entities and terms relevant to the ecosystems of

WeChat and Baidu. Specifically, we focus on the WeChat ecosystem and provide a concise

yet comprehensive description of the communication flow among the mini-app (within the

context of WeChat), the cloud base, the developer’s server, and WeChat’s backend server.

The primary objective here is to elucidate the communication dynamics between the client-

side and server-side components of mini-apps as shown in Fig 1. Additionally, we highlight

the current security measures implemented by WeChat and Baidu to safeguard mini-apps.

2.1 Basic Terminology

Super-app. A super-app client is the host mobile app that features a selection of indepen-

dent services, all contained within a single app. The super-app server is the key authority of

the super-app platform, managing identity and operations of the mini-apps, and providing

9

necessary services. The super-app server exposes a standard set of APIs to all mini-apps,

which we refer to as server-side APIs hereafter.

Figure 1: Overview of the recommended API communication in WeChat Mini-apps.

Mini-app. The mini-app client is the client-side code that runs on top of the super-app

client (also called mini-program, smart-program, micro-app). It is created with the cor-

responding super-app’s devtools and shipped as a package (JavaScript, XML, JSON, and

CSS). Every mini-app has an app ID, which is a unique identifier (in a given super-app)

10

with random alphanumeric characters, often used for the mini-app’s requests to the super-

app server. Every mini-app developer has a random secret (in WeChat and Baidu, called

app secret, 32-character long), assigned to their account, which is used to authenticate the

developer of mini-app for calling the super-app server-side APIs. The app secret is re-

garded as a sensitive piece of information. The developer server is the backend server of a

specific mini-app, set up and maintained by the mini-app developer (not controlled by the

super-app platform). In the case of WeChat, the developer server must have a valid Internet

Content Provider (ICP [54]) licensed domain name. Without specifically mentioning the

server or client/package, hereafter by mini-app we refer to the entire mini-app, any code

representing the corresponding developer or business.

Access token. To use a super-app’s server-side APIs, and access resources associated with

a mini-app, an access token is required. This is an ephemeral secret (valid for 2 hours for

WeChat and 30 days for Baidu, renewable anytime), issued by the super-app server through

an API call, e.g., getAccessToken [39] in WeChat, which requires an app ID and app

secret as request parameters.

OpenID. In WeChat and Baidu mini-apps, the OpenID is a user identifier that is unique for

each mini-app. When a user logs into a mini-app, the mini-app sends a request to the super-

app server to obtain the user’s openID, which is based on the user’s super-app account. In

WeChat, it is an encrypted value of the user’s WeChat ID and the app ID of the mini-app,

and remains the same for the same user-mini-app combination.

WeChat cloud base functionalities. Mini-apps can take advantage of the cloud base [42],

an option in WeChat that enables the mini-apps to utilize some basic cloud functionalities

11

without setting up a dedicated server. The cloud base has a range of features, e.g., cloud

functions, databases, storage and cloud call.

A cloud function allows developers to execute their server-side (JavaScript) code. These

functions can be typically triggered by specific events, such as a user action or any change in

data. Within the mini-app, cloud functions can be triggered with the mini-app’s regular API

(termed as JSAPI) wx.cloud.callFunction. The cloud base also offers the cloud

call capability to call the server-side APIs from cloud functions. This is recommended by

WeChat apart from calling the server-side APIs using developer server or Tencent cloud

hosting [51]. Cloud calls are implicitly authenticated (no need to supply the app secret or

access token).

The JSON cloud base database can be queried by the mini-app to retrieve or update data

using cloud functions. This database can be called using either JSAPIs, or the server-side

APIs from the developer server (with an access token). The cloud base storage provides a

storage space for mini-apps to store their files, accessible by dedicated APIs, cloud func-

tions, or the developer server.

WeChat IP whitelisting. The calls to server-side APIs can be restricted to originate from

only a list of IP addresses (no domain names), configured at the WeChat mini-app developer

portal. If enabled by the developer (disabled by default), only these IP addresses can call

the server-side APIs, i.e., no other hosts can obtain access tokens even if they have valid

app secrets. Note that IP whitelisting applies to all the server-side APIs (i.e., not for specific

APIs).

WeChat plug-in. A WeChat mini-app plug-in is a package of pre-built custom components

12

or libraries that can be integrated into a mini-app. Developers can request to integrate a

plug-in (developed by WeChat and third-parties) from the developer portal.

Server Domain Name Restrictions. Both WeChat and Baidu mini-apps can exclusively

communicate with servers whose domain names are explicitly configured within the de-

veloper portal [45]. It is important to note that the utilization of IP addresses in these

designated domain names is not permissible, except for the use of the Local Area Net-

work (LAN) IP address of the respective Mini Program. Furthermore, the designated do-

main names must undergo the process of obtaining the Internet Content Provider (ICP) li-

cense [54], similar to the developer server. The documentation provided by WeChat explic-

itly states that, for security considerations, the domain name ’api.weixin.qq.com’

cannot be directly specified as a valid server domain name. Consequently, it is not feasible

to invoke server-side APIs directly from within the WeChat Mini Programs. All server-side

API calls must be made exclusively from developer servers or cloud functions. Similarly,

this restriction applies to Baidu Mini Programs, with their designated API endpoint domain

being ’openapi.baidu.com’. In the event that a Mini Program attempts to communi-

cate with these specified domains, WeChat conducts a stringent verification process on the

HTTPS certificate used by the server domain. If this verification process fails, the requested

communication will not be executed.

WeChat Login. wx.login is one of the several APIs provided by WeChat for the de-

velopers to interact with the WeChat’s native app functions and services (also termed as

“JSAPI”). Whenever the wx.login interface is called in a miniapp, the interface will re-

turn a random temporary WeChat login credential (termed as “JS Code”) which is valid for

13

Figure 2: WeChat Code2Session - Login API.

only 5 minutes. The JS Code is for one-time use only. This JS Code is then sent to the

developer’s server using the interface wx.request, from where the WeChat’s Code2Session

API [43] is called. The WeChat’s back-end server returns the session key and Open ID

of the miniapp user to the developer server. Figure 2 illustrates the recommended flow

of the WeChat Code2Session user authentication API. For security reasons, this session

key should not be returned to the miniapp as recommended by WeChat [43]. The session

key will expire only when the miniapp user does not use the corresponding miniapp for a

long time. This code to session login interface is to authenticate the miniapp users to the

WeChat, and a custom login status is determined to the miniapp.

14

2.2 Authentication Secret leakage problem

Mini-apps are quite different from regular mobile apps, in terms of their reliance on the

super-app platform as a runtime authority for authentication, access control and other ser-

vices through the server-side APIs. There are mainly three types of authentication involved

in the super-app environment: mini-app user to super-app, when the user initially logs into

the super-app (usually persistent across reboots as in WeChat); mini-app user to mini-app,

each time (or some cases the first time) the user uses the mini-app and clicks to consent to

identity sharing; and mini-app to super-app, which is often neglected as it happens behind

the scene. Our work deals with this last case (as the other two involve the human mini-

app user which is an orthogonal authentication problem). There exists also mini-app to

mini-app authentication [55] via the super-app, which can also be considered as mini-app

to super-app. As explained in Sec. 2.1, a mini-app uses its app secret (and the app ID)

to obtain an access token from the super-app server which can be used for all subsequent

server-side API calls. This means any improper practices enabling unauthorized calls to

the server-side APIs will compromise the mini-app to super-app authentication, leading to

various security issues or outright attacks. The mini-app authentication secret leakage prob-

lems we consider are usually reflected in the following aspects (1) insecure but common

practices of the mini-app developers; and (2) inherent design flaws and failure to enforce

their own security guidelines by super-app platforms. Taking WeChat as an example, 1) the

app secret should not be included directly within the mini-app package; 2) any API involv-

ing the app secret as its request parameter should be called by the developer server only,

15

not from within the mini-app; 3) IP whitelisting should be configured. Mini-apps devel-

oped by not following one or multiple of such recommendations can be insecure, leading

to unauthorized server-side API calls; see Figure 3.

2.3 Objective

We center our study around the issues of mini-app secret leakage and its exploitation as

presented above, i.e., unauthorized calls to the server-side APIs, caused by insecure de-

velopment practices. We aim to 1) find out the extent to which the insecure development

practices are identified from a large number of mini-apps, despite the warnings in docu-

mentations over time; 2) analyze the feasibility of the attacker being able to actually make

unauthorized calls to individual server-side APIs, for mini-apps with the identified inse-

cure practices; 3) understand the security consequences of such unauthorized server-side

API calls, in a given super-app platform.

2.4 Threat Model

We assume that the mini-apps are benign. The (source) code of the mini-app is integrity-

protected by the super-app. Also, the developer servers as well as the super-app server used

by the mini-apps are trusted and the communication between the mini-app (via the super-

app) and its developer server is through HTTPS, and is thus assumed to be secure. These

assumptions are in line with the day-to-day uses of mini-apps and what has been assumed

by the mini-app service providers.

16

Attacker requirements and capabilities. An attacker with a regular super-app account

can obtain (sometimes on a large-scale) the binary package of any mini-app that is publicly

visible. This can be achieved by several means, e.g., installing the super-app on a rooted

device or its PC client with the help of some reverse-engineering tools (e.g., Frida [38]).

Then, certain open-source scripts (e.g., [13, 14] for WeChat) can be used to extract/unpack

the content (JS and resource files). The attacker can read and change the code of the

reverse engineered mini-app locally, but will not be able to re-publish it for the same app

ID (enforced by the super-app). The attacker can view the code of the mini-app, but will

not have access to the mini-app’s cloud base. They can thus read the mini-app’s code

for hard-coded secrets, and other information such as business logic, and use the obtained

information to attack the mini-app in different ways. To access the developer server-side

APIs and super-app server-side APIs, the attacker does not need to possess any special

privileges, or even a regular super-app account (e.g., WeChat or Baidu). They just need

access to an OS terminal capable of dealing with web requests or a REST client such as

Postman [24], if the IP whitelisting for the mini-app is disabled.

17

Figure 3: Example scenario of an attacker making use of the hard-coded app secrets,
and successfully accessing WeChat’s server-side APIs.

Scope. Our study is primarily focused on WeChat mini-apps, with certain analysis ex-

tended to Baidu mini-apps. WeChat’s other open platform features such as official ac-

counts, WeChat’s SSO, mobile and web development are out-of-scope. Other types of

authentication which do not involve the explicit usage of app secrets, e.g., mini-app user

to super-app (e.g., the attacker being able to log into someone’s WeChat account), mini-

app user to mini-app, and mini-app to mini-app (e.g., one mini-app impersonating another,

see [55]), are excluded. We only examine the (reverse-engineered) mini-app packages,

18

and the response to server-side API calls from the super-app/developer server. We do not

perform traffic analysis and do not consider JSAPIs, and other APIs, e.g., Tencent’s cloud

hosting APIs, third-party APIs, WeChat’s payment APIs, and Baidu’s cloud APIs.

19

Chapter 3

Related Work

In this section, we provide a summary of noteworthy studies concerning super-apps and

mini-apps, security issues identified in the super-app ecosystem, and other works surround-

ing the detection of hard-coded credentials in the source code of different applications.

3.1 Basic study on mini-apps

Zhang et al. [58] implemented the first large-scale WeChat mini-app crawler and performed

an empirical study on the crawled mini-apps. Also, Hao et al. [15] studied the key features,

system architecture, and development prospects of WeChat mini-apps. Below we summa-

rize the studies more relevant to our work.

20

3.2 Security analysis on mini-apps

Zhang et al. [56] analyzed the mini-apps permission model of 9 super-apps, and found

six vulnerabilities with at least one security issue in each super-app; they also presented

three proof of concept attacks that can reveal user location, contacts, and clipboard content

to unauthorized mini-apps. Lu et al. [17] studied security vulnerabilities in 11 super-apps

based on the resource management between the super-app and the mini-app. Further, Zhang

et al. [57] identified the novel identity confusion based on the app ID, domain name, and

capability in 47 high-profile super apps based on the identity check adopted by the super-

apps. They demonstrated several attacks based on this vulnerability, such as installing

malware on victim’s phone, stealing victim’s financial accounts, and bypassing security

patches. Furthermore, the National Computer Network Emergency Response Technical

Team tested around 50 personal banking mini-apps from WeChat and reported that more

than 60% of the mini-apps did not encrypt the user information both in the device and while

it was transmitted [28, 33]. Yang et al. [55] implemented CMRFScanner to identify the

cross mini-app request forgery (CMRF) attacks, a novel attack leading to several security

consequences, e.g., privileged data access, information leakage, and shopping for free.

Wang et al. [37] developed a consistency analysis framework to identify the inconsistencies

between privacy policies and the data practice in the mini-apps. They crawled 10,000 mini-

apps from WeChat and extracted 2,998 mini-apps in which they found 2,680 mini-apps did

not meet the policy requirements.

21

Unlike the prior studies on the security of mini-apps, our study focuses on the mini-

app’s developer server to super-app authentication problem, mainly affecting mini-app data

that can be user-specific or shared among all users of a mini-app, instead of local resources

on a user’s phone. By measuring the extent of insecure development practices (defeating

such authentication), we analyze how the resulting unauthorized server-side API calls can

cause severe security issues, including bringing down the mini-apps and their services. In

a concurrent study, Zhang et al. [59] identified 40,880 mini-apps (approximately 1.18% of

the total 3,450,586) that leaked their own app secrets. However, their study focused on

identifying vulnerable mini-apps that leaked their own secrets. We considered both this

self-leakage and the leakage of other mini-apps’ secrets, resulting in a significantly higher

percentage (32.8%) of app secret leakage (albeit mostly self-leakage, see the last paragraph

in Sec. 5.3).

3.3 Identifying hard-coded secrets

Sinha et al. [30] provided practical solutions to detect, prevent and fix API key leaks in the

source code repositories (GitHub). Meli et al. [18] studied the large-scale secrets leakage

with GitHub Search API and BigQuery snapshot, for a period of six months, especially

targeting 11 different platforms. CredMinder [11] is aimed at finding credentials that are

leaked in Android apps, by using code analysis instead of string matching, in order to iden-

tify credentials even when they are obfuscated. Wen et al. [52] developed iCredFinder to

22

fix the gap of credential leak detection in iOS apps. Saha et al. [27] developed a gener-

alized machine learning-based framework with regular expressions to identify the secrets

in source code, and analyzed 24 different types of secrets with precision and recall rate

of 59% and 97% respectively. Several other studies focus on OAuth and SSO-related vul-

nerablities [16, 35, 36]; e.g., MoSSOT [29] detects app secret and access token leakage

from the network traffic between the relying party and provider apps, which also includes

WeChat and its relying third-party apps (but not the mini-apps).

23

Chapter 4

Methodology

In this section, we discuss our methodology for conducting a step-wise analysis of WeChat

mini-apps for potential unauthorized server-side API calls. The same steps apply to Baidu

mini-apps as well, except for decrypting and unpacking, and IP whitelisting validation.

Our methodology is designed to facilitate the analysis of mini-apps from other platforms

that have a similar mini-app directory structure (like WeChat and Baidu) and rely directly

on secret-based mini-app authentication. A large-scale measurement study on WeChat

and Baidu using this methodology is presented in Sec. 5. We build our tool following this

methodology, which is fully automated, except for separating the Get vs. Modify APIs from

the super-app documentations; we manually label these APIs to avoid calling the Modify

APIs, which may interfere with the mini-apps’ functionality.

24

4.1 Methodology Overview

The analysis is composed of the following steps: preparation of mini-app files, detection

of insecure development practices, reviewing the list of server-side APIs, and testing of

potential unauthorized server-side API calls; see Figure 4. We consider the following in-

secure development practices: hard-coded app secrets in the mini-app package, absence of

IP whitelisting, and direct invocation of server-side APIs. First, we decrypt and unpack the

WeChat mini-apps (using [13] and [14], respectively). This step is not needed for Baidu

mini-apps. Then, with static code analysis of the unpacked mini-apps, we detect hard-

coded app secrets and direct invocation of server-side APIs. Next, we use the identified

app secrets to obtain the access tokens from the super-app server in preparation for next

steps. Meanwhile, we review (once per super-app) the list of server-side APIs, categorize

them and analyze the requirements for invoking them. When it comes to testing potential

unauthorized server-side API calls, we make use of the access tokens from the previous

step to evaluate the callability of these APIs by an attacker, which at the same time also

checks if IP whitelisting is enabled or not.

4.2 Detection of hard-coded secrets

We first manually analyzed 100 WeChat mini-apps, and observed that although such app

secrets are eventually used as request parameters to standard API calls (e.g., code2session

API, see 2.1 and Figure 5), they are also used to make calls to custom APIs of a mini-app

developer server (see Figure 6), or even a few obfuscated functions, which will invoke the

25

Figure 4: Overview of our analysis methodology for WeChat and Baidu mini-apps.

26

standard APIs on the server side. To find and capture the app secret patterns, we designed

regular expressions for WeChat and Baidu to identify such secrets in the unpacked mini-app

code (following similar approaches based on pattern, keywords, and entropy [18, 19, 30]).

Some parts of the source code of the reverse-engineered mini-app are highly obfuscated,

making it difficult to analyze. However, the variable names used for identifying the app ID

and app secret are not obfuscated as observed in our initial manual analysis. Any JSON

data, including API request parameters, will not be obfuscated as the server interprets the

received data depending on the variable names. Similarly, static string matching is also used

against a set of 84 server-side APIs in total to detect calling of these APIs directly from the

mini-app. Note that we do not distinguish between the case where a mini-app discloses

its own secret and the case where it discloses the secret of another mini-app (which may

happen due to code cloning). All our identified app secrets are validated by calling the

getAccessToken API [39] (see the discussion below about obtaining the access token),

ensuring that all the identified secrets are valid and there are no false positives.

4.3 Preparing the list of server-side APIs

We study WeChat and Baidu mini-app’s server-side API documentation [3, 40, 41] and

divide these APIs into two categories: Get APIs that only read information, and Modify

APIs that can cause updates (Table 1 and Table 2).

27

API Category Get API Modify API
Access Token getAccessToken -

Message Templates
addTemplate

getTemplateList deleteMessageTemplate

Traffic Distribution Resources

submitResource
- submitSitemap

interfaceSubmission
submitsku

Coupons
createCoupon

- submitcoupon
ManageCoupon

Table 1: List of Get and Modify Baidu server-side APIs evaluated in our measurement
study.

28

API Category Get API Modify API

Access Token
getAccessToken -

Customer Service Message
- uploadTempMedia

customerServiceMessage.send

Updatable Message
createActivityId setUpdatableMsg

Miniapp Plug-in
managePlugin
managePluginApplication

Miniapps Nearby
getNearbyPoiList deleteNearbyPoi

setShowStatus

Logistics Assistant
getPrinter updatePrinter
getAllDelivery

openAPI Management
getApiQuota clearQuotaByAppSecret

clearQuota

Operations and Maintenance
getFeedback
getDomainInfo

Cloud Base

invokeCloudFunctions
databaseCollectionGet databaseCollectionAdd

databaseCollectionDelete
getQcloudToken databaseAdd

databaseDelete
databaseUpdate
databaseQuery

Table 2: List of get and modify WeChat server-side APIs evaluated in our measure-
ment.

The category (Get/Modify) is determined based on the API’s intended operation and its

request parameters. To further determine their callability without actually invoking them,

we manually analyze the request parameters of each API and confirm if all the required

request parameters can be obtained. Only when an API is confirmed to be callable, we

include it in our analysis. In our measurement study, finding these request parameters and

verifying the callability of Modify APIs are carried out using our automated framework. It

can be inferred from Table 2 that most of the Modify APIs can be called with the help of

29

the response returned from the corresponding Get API, which refers to the special subset

we need to call. To evaluate this predetermined list of server-side APIs in both WeChat

and Baidu, we use the classification specified by the respective mini-apps. In most cases,

all APIs that belong to one category are used for the same mini-app feature. Thus, we can

easily assess a Modify API using the response of a Get API from that same category, and

identify features susceptible to attacks.

4.4 Obtaining the access token and the presence of IP

whitelisting

To prepare for testing the server-side APIs, as well as to verify the validity of the detected

hard-coded secret from a given mini-app, we need to call the access token generation API.

If the API returns a valid access token, it can be inferred that the mini-app is still actively

present in the respective super-app platform. We use the app ID and app secret parameters

from the static analysis along with the authorization grant type parameter set to a constant

value "client_credential". The corresponding super-app server verifies the app ID

and app secret and returns a valid access token. If the app ID or app secret is incorrect,

the API will return an error message which confirms the invalidity of the credentials. Note

that an app secret confirmed to be invalid presently does not mean it was invalid at the time

of being hard-coded in the mini-app package. Being able to obtain an access token in the

previous step can also confirm the absence of IP whitelisting for a mini-app (applicable only

for WeChat mini-apps). If the app secret is invalid, the response from the server indicates

30

that the app ID or app secret is invalid; if IP whitelisting is enabled, the response mentions

that the IP address of the request origin is not in the whitelist. We use such explicit error

messages to check the adoption of whitelisting among all the WeChat mini-apps, even when

we do not have the corresponding app secret (in which case, we use a random 32-character

value).

4.5 Testing the server-side APIs

Using the valid access tokens obtained from the previous step, we attempt to call a subset

of the Get server-side APIs that do not involve any form of modification of the mini-app

data or operations (listed in Tables 2 and 1). Calling this subset is necessary to enable

analysis for the Modify APIs, and we only retrieve metadata to check if the required request

parameters for calling other APIs are available without storing any data returned in the

response. Note that this does not require possessing a WeChat or Baidu account. All

the available server-side API requests have a calling quota and hence, we avoid making

arbitrary API calls. If a Get API is successful for a particular category, then, we determine if

the Modify API from the same category can be successfully called or not. If a Get API call

returns a success response, our framework can automatically determine the callability of a

corresponding Modify API. This is done by making use of a combination of: the response

returned by the Get API, inserting attacker-controlled dummy inputs (based on the API

documentation), searching the mini-app source code for pertinent values. We confirm the

callability of a Modify API if all the required parameters are available. Whenever we need

31

any verification of the behaviour of Modify APIs, or resource-exhaustive calls to the Get

APIs, we test them only with our own mini-app.

32

Chapter 5

Measurements

To achieve the three objectives put forward in Sec. 2, we quantify what can be observed

from a large number of mini-apps, and for individual APIs in their respective contexts.

Also, we consider the historical aspect of such insecure development practices since the

extent (prevalence) we measure can also be temporal, e.g., as the warnings or recommen-

dations in the documentation [47] can be dated back to the early days of mini-apps, what

has been the prevalence over time?

5.1 Datasets

An early collection of WeChat mini-apps we were able to obtain is a dataset of 115,392

WeChat mini-apps ("wxapkg" files), crawled between July 2021 and Dec. 2021 (DATASET1).

We also used a dataset of 10,000 Baidu mini-apps crawled in Jan. 2023 (DATASET2),

10,000 additional WeChat mini-apps, collected on Jan. 25, 2023 (DATASET3). These

33

datasets were crawled using MiniCrawler [58]. Note that this choice of datasets can natu-

rally cover an important case where older versions of a mini-app hard-coded the app secret

which got leaked but the app secret still remains valid now, enabling attacks. Then, it is pos-

sible that by examining the current version of the same mini-app package, no hard-coded

app secret can be detected, hence not drawing attention and misleading both the developers

and WeChat into a false sense of security. For this same-mini-app temporal comparison,

we also randomly picked 100 mini-apps from DATASET1, and analyzed them twice – in

Jan. 2023 and in Mar. 2023, before and after our report to WeChat respectively (more in

Sec. 5.3). We analyzed DATASET1 in Dec. 2022 and DATASET2 in Feb. 2023.

After decrypting the WeChat mini-apps files from DATASET1, we ended up with 115,244

successfully decrypted mini-apps, consuming 265 GB disk space. From these mini-apps,

we could successfully unpack 110,993 in total (434 GB in size), which we used for further

analysis.

For Baidu mini-apps in DATASET2, we extracted the zip files and used them as is

(59 GB in size, no decryption or unpacking needed). Among the recent 10,000 WeChat

mini-apps (DATASET3), we managed to decrypt and unpack 9,994 mini-apps and 9,824

mini-app respectively. For an overview of our datasets and the corresponding app secrets

and generated access tokens, see Table 3.

34

Mini-apps DATASET1 DATASET3 DATASET2

total 115,392 10,000 10,000
decrypted 115,244 9,994 -
unpacked 110,993 9,824 -
hard-coded secrets 43,377 2,894 112
access tokens 36,425 2,572 112

Table 3: WeChat (DATASET 1 and DATASET 3) and Baidu (DATASET 2) mini-app
datasets used in our measurement.

5.2 Measurement Results

We outline our measurement results for each cateogry of the server-side APIs and the cloud

functions in this section along with providing the CVSS metrics that we used to assess the

impact of each unauthorized API call.

5.2.1 Insecure Development Practices

5.2.1.1 Hard-coded app secret and IP whitelisting

Our regular expressions to match the app secrets resulted in hits in 43,337 out of the

110,993 (successfully decrypted and unpacked from DATASET1) WeChat mini-apps (about

39%), and 112 out of the 10,000 Baidu mini-apps (about 1%). When we attempted to gen-

erate access tokens from these app secrets, we found a total of 36,425 (approximately

33%) WeChat mini-apps with valid hard-coded secrets (i.e., successfully generated access

tokens), violating the security guidelines by WeChat in terms of both hard-coding the app

secrets and not configuring the IP whitelisting. On the other hand, all the Baidu mini-

apps with hard-coded app secrets generated valid access tokens, meaning all the identified

secrets are valid.

35

The access token API returned failure responses for 6,959 WeChat mini-apps, in which

for 3,578 mini-apps, the app secret was invalid. For another 3,374 mini-apps, the API

returned a 50002 error code stating that “the user is limited.” We did not find enough

information about this error code, except that, as per the documentation, the user is not

authorized to use this API [46]. For the remaining 7 mini-apps, the API returned that the

requesting IP address is not in the list of whitelisted IPs. The use of IP whitelisting is

indeed very limited as we found out by testing all the 110,993 WeChat mini-apps, using

dummy app secrets for the ones without hard-coded secrets, that only 33 mini-apps have

IP whitelisting configured.

5.2.1.2 Direct invocation of server-side APIs

Attempting to call server-side APIs within the mini-app directly is not recommended by

WeChat or Baidu, not because the direct invocation itself causes security issues, but because

to make such calls successful the developer must involve both hard-coding app secret,

and disabling IP whitelisting (in WeChat), as a mini-app client can be run from any IP

address as stated in 2.1. Therefore, we checked the prevalence of such practice. We found

4,098 occurrences of direct invocations of server-side APIs from 2,317 mini-apps out of

the 110,993 unpacked WeChat mini-apps. We further classify each API call based on

the category [40, 41] as shown in Table 4. We detected a much lower number of direct

invocations in Baidu mini-apps compared to WeChat. In total, there are 43 occurrences of

direct server-side APIs invocations in 11 mini-apps in Baidu (mostly getSessionKey

and getTemplateList APIs).

36

API Categories # miniapps
Mini-app User Login 1723 (42%)
Access Token 554 (13.5%)
Customer Service 429 (10.4%)
Dynamic Messages 319 (7.7%)
Generate QR code 285 (6.95%)
Message Templates 279 (6.8%)
Image Processing 176 (4.3%)
Security Check 134 (3%)
Live Broadcast 81 (1.97%)
Logistics 77 (1.87%)
Data Analytics 41 (1%)

Table 4: WeChat mini-apps with the direct invocation of server-side APIs

5.2.2 Unauthorized Invocation of WeChat Server-side APIs

With a valid access token, all the server-side APIs should be callable for a given mini-

app. However, in practice, each API has its semantics and the mini-app’s functionality and

current state determines whether a specific API can be called or supported at a given time.

Therefore, next, we examine individual APIs’ callability for the chosen server-side APIs

under each category (see Tables 2 and 1, the category names are from the official WeChat

and Baidu documentation [3, 40]). We present the statistics of the successful server-side

API calls, based on the chosen 26 WeChat server-side APIs, and 10 Baidu server-side APIs

we tested in Tables 5, and Table 7. We also discuss selected per-category results for WeChat

below (see 5.2.3 for Baidu).

5.2.2.1 Customer service messages

We test this category of APIs to determine if an attacker can send messages to mini-app

users and insert arbitrary media to user messages. For this category, we evaluate two APIs,

37

uploadTempMedia, and customerServiceMessage.s-

end. We observe that if the Customer Service Message feature is enabled for a mini-app,

then uploadTempMedia is callable, as it requires only the media file, form data and the

access token as its request parameters. The customerServiceMessage.send API

is callable only when the openID is present. Our framework identified that openIDs are

disclosed for 312 (<1%) mini-apps via the getPrinter API, and for 18,475 (50.7%)

mini-apps via the getFeedback API; hence customer service messages can be forged

for such mini-apps. Here, we do not consider other potential sources for obtaining openIDs

such as cloud functions which may depend on the mini-app’s business logic.

5.2.2.2 Cloud base HTTP API

If the API invokeCloudFunction is callable, for the mini-apps containing the access

token and the cloud function calls in the mini-app code, our framework statically searched

through each mini-app directory to identify the cloud function calls and collect their names.

Among the total 36,425 mini-apps that we tested, 254 (<1%) mini-apps use cloud base, and

our framework collected 202 (<1%) mini-apps with cloud functions having valid access to-

kens, containing a total of 992 distinct cloud functions. As several cloud functions involved

update, delete operations in the cloud level, we did not invoke any of the collected cloud

functions.

We also test the cloud database CRUD (Create, Read, Update, Delete) APIs to verify

if an unauthorized access to the database is possible. Out of the total 11 database APIs

38

available, we directly test only one of them – databaseCollectionGet, which re-

turns only the table names from the cloud database. With these names, we only evaluate

the remaining 6 chosen APIs related to cloud database based on their callability. Through

statically searching the mini-app source code, we see that out of 254 (<1%) mini-apps

that use cloud base, 179 (<1%) mini-apps use the cloud database. We identify only for

24 (<1%) mini-apps out of 179 mini-apps database APIs are callable, as the API requires

cloud environment ID as its request parameter. The remaining 230 (<1%) mini-apps either

did not have a valid cloud environment ID in the mini-app’s code or the APIs returned

with an error stating that the the number of requests exceeded the quota for the mini-app.

We further evaluated other database APIs considering the 24 mini-apps. We find that the

databaseAddCollection and databaseDeleteCollection can be performed

for all the 24 mini-apps. Additionally, adding a record to the database collection, updating

and deleting are also possible for these 24 mini-apps. We do not attempt to access or down-

load any of the identified database tables apart from evaluating the callability by assessing

the request parameters for the corresponding server-side APIs.

We then test for the Tencent cloud credentials API [32]. Out of the total number of

mini-apps tested, we obtain the Tencent cloud API calling credentials for 11,786 (32.3%)

mini-apps. For the remaining 24,639 (67.6%) mini-apps, the QCloud token API returned

an error message stating that the mini-app has no cloud base privilege, meaning that the

mini-app does not use Tencent cloud base. We did not test the cloud storage APIs, as when

evaluated, we see that the upload link, download link and batch delete APIs require the file

path and value where, in most cases, it is unknown to an unauthorized user. If the storage

39

paths are revealed in some part of the code, it is easier to upload arbitrary files, download

files and delete files from the cloud storage. In our analysis, we did not find any hard-coded

storage path in the tested mini-apps.

5.2.2.3 Plug-in management

We test this category of APIs to verify if an attacker will be able to misuse the plug-in-

related functionalities of a mini-app. The API getPluginList (managePlugin with

"list" as parameter in v2 API documentation) is to retrieve the current in-use plug-ins

for any mini-app. No error code was received for 17,433 (47%) mini-apps when calling

getPluginList API. For the remaining 18,992 (52.1%) mini-apps, the API returned

with an error stating that accessing the API is unauthorized, meaning that the mini-app has

not configured plug-in related permissions in the developer portal. Since the plug-in app ID

is public information for any plug-in, the applyPlugin (managePluginwith "apply")

API is callable for these 17,433 mini-apps, as identified by our framework. This API takes

in only the access token and the plug-in app ID as request parameters. For 7,242 (19%)

mini-apps that make use of the plug-ins (returning a non-empty list), the unbindPlugin

(managePlugin with "unbind") API will be callable.

5.2.2.4 openAPI management

We verify openAPI management APIs to determine if the API management details can

be obtained and modified by the attacker. We selected one Get API getAPIQuota and

two Modify APIs clearQuota and clearQuotaByAppSecret. Using our analysis

40

framework, we make calls to the getAPIQuota API for all the mini-apps with valid

access tokens. The clearQuota API and clearQuotaByAppSecret API can also

be called for the mini-app with valid hard-coded app secrets and access tokens generated.

Therefore, the attacker can view the used quota for every server-side API and reset the

quota at any time.

5.2.2.5 Mini-apps nearby

This is a feature for business mini-apps to show up in WeChat (under mini-apps nearby)

when a user is in proximity to their business location. We test this category to check

if an attacker will be able to add or modify the nearby points of interest of a mini-app.

We found 4,918 mini-apps (13%) had this feature enabled (via nearbyPoi.getList);

2,927 (8%) mini-apps had configured some POIs, for which an attacker will be able to

call the deletePOI and setShowStatus APIs to delete or change the visibility of the

POIs, respectively. 8,110 (22%) mini-apps returned an error stating that the mini-apps are

personal mini-apps (as opposed to business mini-apps). For 23,397 (64%) mini-apps, the

API returned an error stating that the nearby features are blocked.

5.2.2.6 Logistics assistant

This category of APIs allows business mini-apps to manage logistics such as the delivery of

products. We chose 2 Get APIs (getAllDelivery and getPrinter) to test if an at-

tacker will have access to the logistics information of a mini-app. For 26,190 (71.9%) mini-

apps, calls to getAllDelivery API were successful but only 8,622 (23%) mini-apps

41

returned the mini-app logistics delivery details as a result of this API. We conducted further

tests using the getPrinter API, which we rely on for the openIDs to test customer mes-

sage APIs. 312 (<1%) mini-apps returned data for the getPrinter API, which in turn

is useful in calling the updatePrinter API, and contains the sensitive user openIDs

(required for other attacks e.g., malicious redirects). For the remaining 10,235 (28%) mini-

apps, both APIs returned an error stating that the API is unauthorized (i.e., the logistics

assistant is not configured, or the mini-app is for personal use as opposed to business).

5.2.2.7 Updatable messages

We test this category of APIs to see if an attacker can update the messages that are already

posted to users. We call the createActivityId API to generate a unique activity

ID which can be further used to call the setUpdatableMessage API. Although the

setUpdatableMessage API is always callable, we find that only 17 mini-apps use

this feature.

5.2.2.8 Operations and management

. We pick two Get APIs from this category and test by calling them to verify if an attacker

is able to access the mini-app’s server domain configuration and mini-app’s feedback from

the users. 18,475 (50%) mini-apps returned customer feedback as a result of the get-

Feedback API, which also returns the user’s openID against each feedback. The openID

returned by this API can further be exploited in the customer service message API to send

phishing messages and malicious redirects.

42

5.2.3 Unauthorized Invocation of Baidu Server-side APIs

5.2.3.1 Message templates

We test this category of APIs to verify if the message templates of the mini-apps can be

accessed by an attacker. We see from our analysis that the getTemplateLibraryList

API returns valid values for all 112 (100%) mini-apps, and hence it is possible to call the

addTemplate API for these 112 mini-apps, as the output of the former API can be used

as an input for the latter. Using our framework, we call getTemplateList API for all

112 mini-apps, which returned valid values for 74 (66%) mini-apps, and thus it is possible

to call deleteTemplate for these 74 mini-apps.

5.2.3.2 Traffic distribution resources

Using this category of APIs, a mini-app developer can distribute the resources for a mini-

app across different paths. We test this list of APIs to check if an attacker is capable of

submitting resources such as image files to the Baidu server. We did not actually make calls

using these APIs (submitResource, submitSitemap, interfaceSubmission,

submitsku), but verified only the callability. These calls require several parameters,

which are all user-controlled values, and thus the APIs can be called by the attacker for all

the 112 (100%) mini-apps with valid app secrets.

5.2.3.3 Coupons

We test the APIs under this category to verify if an attacker can create and manage Baidu

coupons (provided by Baidu to the mini-app developers, who then manage and distribute

43

the coupons to the mini-app users). We do not call any APIs under this category to avoid

adding anything to the server arbitrarily, and thus only check the callability of these APIs

(createCoupon, submitCoupon, and ManageCoupon). For all 112 (100%) mini-

apps with valid app secrets, these APIs are callable, hence enabling an attacker to manipu-

late the coupons.

5.2.4 CVSS Scores

We make use of the CVSS (Common Vulnerability Scoring System) score calculator from

NVD [21] to calculate the base metrics (confidentiality, integrity and availability), and

estimate the security consequence of each super-app server-side API call. We set our attack

vector as network and attack complexity as low, as calling these APIs does not require any

special privileges and involves no user interaction. The scope of attack does not change in

most cases, except for the WeChat cloud base related attacks, where a vulnerable mini-app

could affect other non-vulnerable mini-apps or WeChat official accounts; see Sec. 6.2. The

CVSS scores are summarized in Table 5 (and Table 7 in Appendix A). It is to be noted that

by the impact of medium and low, it defines the impact of the attack on the mini-app and

the user. This does not change the attacker capabilities and hence, for executing all these

super-app server-side APIs, the attacker requires only a network connection.

5.2.5 Testing dangerous server-side APIs with our own mini-app

To confirm the callability of all the server-side APIs, including the Modify APIs (which we

could not call in live mini-apps of other developers), we developed our own simple WeChat

44

mini-app and published it on the WeChat mini-app platform. With this published mini-app,

we enabled all the available features provided for individual developers, and we make all

the Get and Modify API calls that apply to personal mini-apps. We could call all the Get

APIs successfully after generating the access token. We employed the response returned

by the Get APIs to call the Modify APIs. We enabled the plug-in feature for the mini-app,

added a few relevant plug-ins from the developer portal and used them in our mini-app,

which we later deleted using the server-side API, breaking the entire mini-app functionality.

We further accessed all the cloud database related information, and updated/deleted all our

stored (test) information. As a last step, we also made continuous arbitrary calls to the

server-side APIs, exhausting the API calling limit to the point that the mini-app cannot

make any further calls to the exhausted server-side APIs. Our proof of concept attacks

confirm the exploitability of mini-apps with known app secrets. Since Baidu does not

allow individual developer mini-apps (only enterprises), we were unable to confirm the

callability of Modify APIs in Baidu.

5.3 Temporal Comparison

We perform two additional measurements to address another aspect of our first objective

regarding the extent of the insecure development practices over time.

45

5.3.1 Prevalence over time

To learn the trend of the prevalence of the insecure development practices, we also con-

ducted the same measurement on the more recent DATASET3 in February 2023, and we

found the app secrets in 2,894 (28.9%) mini-apps, out of which 2,572 (25.7%) mini-apps

have valid secrets in them. Our additional analysis did not change the outcomes of the eval-

uation that we performed with the older dataset; see Table 3 for the comparison between

DATASET1 and DATASET3, and Table 7 in Appendix A for breakdown on individual

server-side API calls and their impacts.

5.3.2 Same-mini-app comparison

We randomly selected 100 WeChat mini-apps with hard-coded app secrets detected from

the previous analysis (DATASET1, crawled in 2021), and downloaded their current version

(on January 24, 2023 and again on March 6, 2023) through an updated reverse-engineering

approach with Frida [38] (due to the technical evolution of WeChat, hooking a different

library and function), and rerun our analysis for comparison.

This experiment is motivated by the fact that hard-coding app secrets (as well as not

configuring IP whitelisting in WeChat) has been discouraged or even prohibited (but not

enforced), only recently more strict checks were introduced [44]. So, we would like to see

if there was any change to the mini-apps vulnerable to those unauthorized server-side API

calls. WeChat has recently enforced the restriction on launching a mini-app when it has

hard-coded app secret in it (exact timeline unknown, but this was observed coincidentally

after our report was filed). We verified this by attempting to submit our own mini-app with

46

the hard-coded app secret in plain-text. Our mini-app got rejected during the audit phase

stating the obvious reason of having app secret in the code. However, with our temporal

comparison, it is evident that the mini-apps that are already on the platform with the app

secrets are still not patched, thus remain vulnerable to attacks.

Out of the total 100 mini-apps investigated that were identified with valid app secrets in our

initial analysis, 83 still have the same app secrets hard-coded into their source code in the

latest versions. Four have eliminated the app secret from the source code, yet the app secrets

that were previously identified in these mini-apps are still valid (access token generated).

Three mini-apps have changed their app secrets to other values, which are also hard-coded

in the current versions. Among the remaining, 9 mini-apps which had valid secrets before

are currently invalid and their current source code does not contain any app secrets. One

mini-app with hard-coded app secret has IP whitelisting configured (previously absent).

These results for the 100 mini-apps remained the same both in our tests in January 2023

and in March 2023, showing no very significant changes in mini-apps with hard-coded app

secrets that were published before the current (no hard-coded app secret) enforcement by

WeChat. In the end, 90/100 mini-apps remain vulnerable.

We further tested all the previously identified WeChat mini-apps with app secrets (36,425

mini-apps) if those app secrets are still valid by trying to generate the access tokens again

in March 2023. We find that out of the total tested, for 36,293 mini-apps (99.6%) the se-

crets remain valid. For the ones that are no longer valid, the getAccessToken API

threw an error stating that the app secret is invalid, except for 2 mini-app which has IP

whitelisting enabled and configured. However, in our recent analysis of the same dataset in

47

July 2023, we observed a significant decrease in the percentage of valid secrets to 16.5%

(18,332 mini-apps) as a result of WeChat’s restrictions on the use of app secrets. Out of

these, 3,414 mini-apps leak the app secrets of other mini-apps (i.e., own app secret leakage

by 14,918 mini-apps).

However, in our recent analysis of the same dataset in July 2023, we observed a signif-

icant decrease in the percentage of valid secrets to 16.5% (18,332 mini-apps) as a result of

WeChat’s restrictions on the use of app secrets. Out of these, 3,414 mini-apps leak the app

secrets of other mini-apps (i.e., own app secret leakage by 14,918 mini-apps).

5.4 Implementation

We use Python to implement the automated analysis with 4,643 lines of code. The frame-

work consists of three main components in common for WeChat and Baidu: (1) static

searching of hard-coded app secrets and validating them, (2) calling the server-side Get

APIs, and (3) evaluating the Modify APIs. We also implement the cloud base APIs test-

ing for WeChat mini-apps. Based on our observations, we created two separate regular

expression patterns for WeChat and Baidu mini-apps for finding app secrets.

5.5 Efficiency

We run our analysis on an Ubuntu desktop (Intel i7-10700, 2.90GHz, 16GB RAM). We

divided the entire analysis into three steps - the pre-execution steps, text pattern matching

and the actual analysis. The pre-execution steps involve the decryption and unpacking of a

48

mini-app. For WeChat mini-apps, we first decrypted and unpacked them, which on average

took 3.98 seconds/mini-app. Since the analysis involves a time-consuming process of reg-

ular expression pattern matching against a large number of mini-app files, we first filtered

the mini-apps that contain the app secrets and related keywords. Further, we evaluated

those mini-apps with the built regular expression, and then the framework performed the

actual analysis of obtaining the access token and calling other server-side APIs for these

mini-apps. The average lines of JavaScript code per mini-app (both WeChat and Baidu) are

approx. 10,000 and the average time taken for finding an app secret is 3.58 seconds/mini-

app, and the actual evaluation of one mini-app is approx. 6 minutes against 26 WeChat

server-side APIs and approx. 4 minutes against 10 Baidu server-side APIs. To fully utilize

our CPU, the analysis was carried through 7 parallel threads, and it took about 3 days to

analyze all the WeChat mini-apps, and about 5 hours for Baidu mini-apps.

5.6 Effectiveness

We perform a manual evaluation of the outcomes generated by our analysis framework.

This evaluation serves to determine the effectiveness of our system by identifying instances

of false positives and false negatives. In our effort to enhance the precision of our tool, we

initially observe all the app secrets embedded within the mini-app’s source code, noting

their varying character lengths. Subsequently, we use these secrets in conjunction with

the access token generation API. To accomplish this, we formulate a regular expression

designed to validate alphanumeric characters specifically with a length of 32 characters.

49

The 32-character alphanumeric strings, corresponding to the identified app secrets, were

then tested against the access token API to confirm their validity. If the value proved valid,

the API promptly generated the access token. In contrast, an error was returned by the API

if the app secret was invalid. Hence, the probability of capturing an incorrect app secret and

subsequently proceeding with the API calls is exceedingly low. This practically eliminates

the possibility of false positives.

Although as we identified in 9,244 WeChat mini-apps and in 21 Baidu mini-apps with

multiple hard-coded app secrets, only one of those secrets turns out to be valid after the

token generation attempt. To identify false negatives, we randomly chose 200 WeChat

mini-apps and 50 Baidu mini-apps where no hard-coded app secrets were identified by our

regular expression, and checked them manually. Out of the 250 mini-apps, no hard-coded

app secret was found.

50

Server-side APIs Required parameters # miniapps [A] [B] [C] [D] [E] Impact

clearQuotaByAppSecret appID, appSecret 36,425 High

clearQuota AT, appID 36,425 High

managePlugin AT, pluginAppID 7,242 High

deleteNearbyPoi AT, poiID 2,927 High

setShowStatus AT, poiID 2,927 High

managePluginApplication AT, appID 772 High

invokeCloudFunctions AT, cloudFunctionName 202 High

databaseCollectionGet AT, cloudEnv 24 High

databaseCollectionAdd AT, cloudEnv, CollectionName 24 High

databaseCollectionDelete AT, cloudEnv, CollectionName 24 High

databaseAdd AT, cloudEnv 24 High

databaseDelete AT, cloudEnv 24 High

databaseUpdate AT, cloudEnv 24 High

databaseQuery AT, cloudEnv 24 High

setUpdatableMsg AT 17 High

uploadTempMedia AT 36,425 Medium

getApiQuota AT, cgi_path 36,425 Medium

getDomainInfo AT 33,795 Medium

getFeedback AT 18,475 Medium

customerServiceMessage.send AT, openID 18,224 Medium

getQcloudToken AT 11,786 Medium

getAllDelivery AT 8,622 Medium

getPrinter AT 312 Medium

updatePrinter AT, openID 312 Medium

createActivityId AT 36,425 Low

getNearbyPoiList AT 2,927 Low

addTemplate* AT 112 Medium

submitResource* AT 112 Medium

submitSitemap* AT 112 Medium

interfaceSubmission* AT 112 Medium

submitsku* AT 112 Medium

createCoupon* AT 112 Medium

submitcoupon* AT 112 Medium

ManageCoupon* AT 112 Medium

getTemplateList* AT 74 Medium

deleteMessageTemplate* AT 74 Medium

Table 5: Statistics of unauthorized callable WeChat (DATASET1) and Baidu
(DATASET2) server-side APIs, including their required parameters. Items marked
with * denote Baidu APIs (at the lower part of the table). [A]: Read Mini-app Data;
[B]: Send Arbitrary Messages; [C]: Data Tampering; [D]: Malicious Redirects; [E]:
Resource Exhaustion; AT: Access Token; The checkmark denotes the possibility of the
attack using the corresponding server-side API. Impact: the impact of the attacker’s
invocation of the API on a mini-app and its users — determined based on the CVSS
calculator (see 5.2.4).

51

Chapter 6

Security Consequences

Based on the analysis results presented in Sec. 5, in this section, we address our third

objective to understand the security consequences of the unauthorized server-side API calls

caused by hard-coded app secrets and absence of IP whitelisting.

6.1 Consequences from Server-side APIs

After analyzing individual server-side APIs for their callability by an attacker based on

per-mini-app semantics/states, we come up with six impact categories by reviewing several

sources (e.g., [20, 22]) adapted to the mini-app paradigm; see Table 5 for a complete list

of the APIs tested and matched with the impact categories, and their corresponding CVSS

severity scores, as we determined using the CVSS calculator (Appendix 5.2.4). We provide

further details on these categories below; see Table 6 for the statistics of mini-apps against

each consequence.

52

6.1.1 Authentication bypass and entity impersonation

Pertaining to the type of mini-app to super-app authentication, we have studied the prob-

lem of unauthorized calls to server-side APIs, and how the super-app server authenticates

individual mini-apps. This is very different from the other types of authentication where

a human user is involved to provide knowledge/possession/biometrics at the time of au-

thentication. For mini-apps to get authenticated with the super-app server, which in some

sense is on behalf of the mini-app developer, the developer needs to store a form of secret

securely in advance to be used at runtime. The WeChat way is to recommend the use of a

developer server to call their server-side APIs where the app secret can be stored, assum-

ing the developer server is secure (which is relatively true). However, in practice, some

developers make direct server-side API calls within the mini-app, which is not blocked by

WeChat or Baidu (blocked in the WeChat developer portal, but can still be unchecked in the

devtool for development and testing), and hence creating the need for hard-coded secrets

in the mini-app package. IP whitelisting in WeChat was expected to add further restric-

tions on which server IPs can be used to make calls involving app secrets; however, this

again required developers’ understanding and engagement, which does not happen readily

in practice. In consequence, an attacker having extracted the app secret from a package will

be able to generate a valid access token from any system and effectively bypass mini-app to

super-app authentication impersonating the mini-app developer. Super-app servers assume

that any request that contains a valid app secret or access token is a legitimate request and

respond with the requested data, and thus allow the attacker to interact with the super-app

servers. What makes it worse is that whoever calling these APIs do not even need to possess

53

a super-app account, due to no binding to the super-app (e.g., WeChat, Baidu) environment.

6.1.2 Reading mini-app data

36,425 WeChat mini-apps from DATASET1 and 112 Baidu mini-apps from DATASET2 are

subject to data exposure, through unauthorized server-side API calls (when the correspond-

ing feature is enabled by the developer); see Table 5. Examples of sensitive mini-app data

that can be exposed include but are not limited to mini-app data analytics, email addresses,

security questions and answers, order IDs, tracking numbers and transaction information.

This undermines data confidentiality of the super-app ecosystem, both for the millions of

users of affected mini-apps and their developers. We refrain from measuring the extent of

such leakage due to obvious ethical issues.

6.1.3 Mini-app data tampering

Through unauthorized server-side API calls, in addition to losing confidentiality, mini-app

data can also be tampered with. For example, when a WeChat mini-app has the plug-in

feature enabled and the mini-app’s category matches with the plug-in’s category, the man-

agePlugin API can send arbitrary requests to the legitimate plug-in apps, and the same

API can remove any plug-in from the live mini-app, thus breaking the mini-app’s func-

tionality (details in Sec. 5.2.2). Unauthorized access to a mini-app’s cloud database can

lead to more catastrophic consequences as an attacker can read/modify the entire database,

including deleting it. This combined with the plug-in deletion can bring down the mini-app

54

completely, thus affecting the availability of the mini-app. Unauthorized calls to the previ-

ously mentioned deletePOI and setShowStatus can obviously manipulate config-

ured points of interest of a business mini-app.

In Baidu, with the APIs such as submitResource, and submitSitemap, an at-

tacker can upload arbitrary file resources to the mini-app. This unauthorized access also

enables the attacker to create and submit fake coupons for the corresponding vulnerable

mini-apps, thus adding arbitrary and fake data to the server.

6.1.4 Resource exhaustion attacks

As all the WeChat and Baidu mini-app server-side APIs have a quota limit (how many

times an API can be called), the attacker can call these APIs repetitively until the limit

is exhausted and are no longer available for the legitimate in-mini-app usage. Therefore,

we can consider all the mini-apps for which an access token can be successfully generated

to be vulnerable to resource exhaustion attacks. What is worse, in WeChat, by using the

getApiQuota API, an attacker can obtain the quota for each API further facilitating the

attacks, e.g., by making just enough number of calls to exhaust the limit; and the clear-

Quota API may also be exhausted for the legitimate user which can only be called 10

times per month. All these harm the availability of mini-apps in the super-app ecosystem.

6.1.5 Sending arbitrary messages and malicious redirects

From Customer Service Messages in Sec. 5.2.2, it is clear that an attacker can send arbitrary

customer service messages to the affected WeChat mini-app users. This message can be a

55

text, an image, an external link or a link to open another mini-app. Attackers can obtain the

openIDs of an affected mini-app with the help of other server-side APIs like getFeed-

back and getPrinter (also cloud functions or database, in some cases), and use those

openIDs to send arbitrary messages. Further, attackers can also modify the news-feed of

the affected WeChat mini-apps as discussed in Sec. 5.2.2 (under “Updatable Messages”),

including past messages from a user’s feed. This can lead to fraud and phishing attacks,

and malicious redirects. In Baidu, unlike WeChat, we did not find the leakage of openIDs,

and hence, sending malicious messages to users seems infeasible.

6.2 Consequences from Cloud Functions

As WeChat cloud functions provide the developers with an online space to host business

logic, they will not be part of the mini-app package. In the package, we only see where a

cloud function call is made, the cloud function names, and the parameters passed to that

function. These cloud functions can also be triggered by the developer’s server using the

server-side API invokeCloudFunction. As the API requires only the cloud function

name, the parameters to that function and the mini-app’s access token, an attacker can

easily use the server-side API to invoke the cloud function by using the extracted app secret.

Making such unauthorized calls can further harm business logic in the cloud, impacting all

the mini-app’s users.

As an example, we observed that an e-commerce mini-app with hard-coded app

56

secret has multiple cloud functions such as confirmCustomerOrder, editCus-

tomerOrder, changeDeliveryAddress, changePaymentStatus, and can-

celOrders, with order ID and openID as the parameters to these functions. It appears to

be possible to obtain the order ID and openID by calling the getCurrentOrderList

cloud function, which will return a list of all orders, containing the order ID, openID, order

date, total cost, and delivery address. As a result, an attacker can simply use the curl com-

mand on the terminal to call invokeCloudFunction with the identified cloud function

name getCurrentOrderList, and obtain all the currently placed orders’ order IDs and

openIDs. By employing this information, the attacker can invoke other cloud functions to

modify the order address to their own, cancel orders arbitrarily, edit current orders, change

the payment status, etc.

Another important aspect of the cloud base is that it can be shared between other ser-

vices of a WeChat mini-app developer, such as other mini-apps, and WeChat official ac-

counts that can provide a hub for branding products and gather followers. If one of their

mini-apps has its secret hard-coded in the mini-app code, using that secret, an attacker can

access the common cloud base (e.g., cloud functions, database, storage) and attack or even

worse, take down all the relying services of that cloud base.

57

Consequences DATASET1 DATASET3 DATASET2

read mini-app data 36,425 2,572 112
send msgs. 18,241 199 -
data tampering 36,425 2,572 112
malicious redirects 23,162 573 -
resource exhaustion 36,425 2,572 112

Table 6: Overview of identified security consequences.

58

Chapter 7

Conclusion and Future Works

In this section, we conclude the thesis by discussing the key takeways from our research.

We further provide mitigation steps for the super-apps, limitations of our methodology, the

ethical considerations we undertook and discuss future work.

7.1 Key takeaways

In here, we discuss the takeaways and reflections on our measurement and analysis of the

mini-app to super-app authentication problem due to developer secret leakage.

7.1.1 Root cause analysis

After examining the code of the large number of mini-apps and corresponding documenta-

tions, we try to further understand why such app secret leakage problems happen.

59

Binding through super-app. When making calls to super-app server-side APIs, the sub-

ject being authenticated is just code (at least in WeChat, TikTok and Baidu) on behalf of

the mini-app developer, or in certain terminologies, the third-party user or the merchant.

Without another aiding entity, the app secrets must be stored with the code. This is in con-

trast to the getAuthCode API of Alipay mini-apps [2], which prompts the user through

the super-app to consent and returns an authorization code (equivalent to a dynamic app

secret). This code can then be used with applyToken to get an access token to call

server-side APIs. Access tokens generated this way will be per user session, “endorsed”

by the super-app (as the super-app server would not assign a dynamic app secret to random

requesting code, unlike the static app secret which can be pre-assigned).1 Therefore, we

can see that involving the super-app to locally authenticate the mini-app code and generate

dynamic app secrets can avoid having to hard-code static app secrets, which is not the case

for super-apps like WeChat and Baidu.

Figure 5: Example code snippet of a WeChat mini-app using server-side API calls in
the code with hard-coded secret

Intended use of server-side APIs. Despite having to hard-code app secrets as discussed
1The same authorization also exists in WeChat/Baidu but not for this purpose. Only when the API involves

accessing super-app-stored user information, a dynamic app secret is used along with the regular app secret
(using code2Session API for WeChat and getsessionkey [5] for Baidu), which still does not avoid
hard-coding app secrets.

60

above, the location matters. Hard-coding app secrets in the mini-app as shown in Fig. 5 and

Fig. 6 is considered an insecure practice according to WeChat, and the intended way is to

manage the entire business logic on the developer server where the app secret is stored and

used to make all the super-app server-side API calls. However, our measurement clearly

showed that shifting this to mini-apps (potentially falling in the wrong hands) can lead to

significant security consequences. Therefore, our observation is that mini-app developers

involved insecure development practices and the super-app platform also failed to prevent

them in the first place.

Figure 6: An example of a WeChat mini-app calling a developer server API for
WeChat login with a hard-coded secret that is passed from the mini-app.

7.1.2 Comparing WeChat and Baidu with other super-app platforms

Other miniapp platforms like QQ,2 Duoyin (Chinese TikTok), Toutiao,3 and DingTalk4

also offer mini-app features with their own server-side APIs, and similar to WeChat, they
2QQ mini-apps - https://q.qq.com/wiki/develop/miniprogram/frame/
3Duoyin and Toutiao from ByteDance - https://developer.open-douyin.com/docs/resource/zh-CN/mini-

app/introduction/overview/
4https://open.dingtalk.com/document/orgapp/introduction-to-dingtalk-mini-programs

61

https://q.qq.com/wiki/develop/miniprogram/frame/
https://developer.open-douyin.com/docs/resource/zh-CN/mini-app/introduction/overview/
https://developer.open-douyin.com/docs/resource/zh-CN/mini-app/introduction/overview/
https://open.dingtalk.com/document/orgapp/introduction-to-dingtalk-mini-programs

require the usage of an access token for these APIs’ invocation. QQ, being under Tencent’s

ownership, shares substantial similarities with WeChat in terms of API functionalities [26].

Duoyin and Toutiao, developed by ByteDance, follow a similar pattern, requiring access

tokens obtained through the getAccessToken API with parameters like app ID, app se-

cret, and grant type set to "client_credentials" [12]. DingTalk, developed by Al-

ibaba, provides different mini-app platforms but retains a common access token acquisition

process through the gettoken API, utilizing parameters like corpID and corpsecret [10].

Our approach for WeChat and Baidu may also apply to the above three platforms, and lead

to similar attacks if the front-end code of mini-apps from these platforms discloses app

secrets, despite the documentations stating otherwise [10, 12, 26].

In contrast, Paytm,5 a prominent digital payments app in India, utilizes a different ap-

proach for access token retrieval. The getAccessToken API requires the client ID and

client secret in the request header, along with other parameters in the request body, such

as the scope, grant type, and authorization string obtained through the paytmFetchAu-

thCode JSAPI [23]. Similarly, Alipay6 mini-apps have their own set of server-side APIs,

where the access token is obtained using the applyToken API with specific parameters

like the mini-app’s ID, authClientID, grant type set to "AUTHORIZATION_CODE", and

the corresponding authCode acquired through the my.getAuthCode JSAPI [2]. It is

worth noting that the acquisition of authorization codes, linked to individual users, poses

a challenge for the attackers. Requiring explicit authorization makes it largely impractical

to obtain users’ authorization codes at a large-scale. While attackers may resort to creating

5Paytm - https://business.paytm.com/docs/miniapps/overview
6Alipay - https://miniprogram.alipay.com/docs/

62

https://business.paytm.com/docs/miniapps/overview
https://miniprogram.alipay.com/docs/

malicious mini-apps to deceive users and obtain their authorization codes, replicating this

process for other mini-apps is not feasible. Consequently, access tokens obtained through

this grant type offer better security against the attacks considered in our study.

7.1.3 Mini-app to developer server authentication

Although our work is mostly centered on mini-app to super-app authentication using the

app secrets, we also manually test the authentication of mini-app to its developer server.

Through experimenting with our own mini-app, we confirm that the developer server does

not enforce restrictions for incoming requests from mini-apps. We also confirm that it is

possible for a mini-app to communicate with other mini-apps’ developer servers. Thus,

keeping the secrets in the developer server just shifts the authentication problem if it is not

handled by the developers properly.

7.2 Recommendations

We enumerate a few potential directions to mitigate the leakage of authentication secrets as

below.

7.2.1 Replacing the developer server with cloud features

As one important advantage of mini-apps, developers can be saved from the need to deploy

their own servers. They can make use of WeChat cloud base and Tencent cloud hosting to

63

host their mini-app’s backend, in which no explicit app secret or access token is required—

an implicit grant is implemented. In addition, all necessary server-side APIs can be invoked

from cloud functions to lessen the reliance on access tokens. However, this is secure only if

the app secret has not been hard-coded, otherwise without IP whitelisting, cloud functions

can be called without authorization as seen in Sec. 5.2.2. In certain cases, a developer

server is not avoidable, e.g., the business may involve a large amount of data/code, not

manageable or cost-effective for the cloud base; in such cases, the developers must avoid

hard-coding app secrets and enable IP whitelisting.

7.2.2 Mandating IP whitelisting

When a developer server is necessary and can be used to make super-app server-side API

calls, IP whitelisting can be enabled to only allow making calls from the IP address of

the configured developer server. Despite its technical feasibility, forcing a fixed set of IP

addresses may not work for developers who do not own the infrastructure or have servers

of a varying nature. But this might be mandated to popular, security-critical mini-apps.

7.2.3 Disallowing app secret hard-coding

A straightforward way is to restrict it from the source by WeChat/Baidu. As of this writing,

WeChat already prevents mini-apps from being released if hard-coded secrets are detected

and the latest version of devtools [49] supports app secret detection as part of code quality

analysis. However, this is not retrospective, leaving still 32.6% live mini-apps with the

app secrets hard-coded. We strongly suggest that such hard-coding prohibition should

64

be implemented for all mini-apps. Note that, we even observed from our manual code

review, several mini-apps hard-coded valid app secrets for no apparent reason (i.e., no use

of developer/WeChat server-side APIs), and simply add app secrets in the globalData

object.

7.2.4 Disallowing server-side API invocation from mini-apps

This is already in use through server domain name restrictions [45], which requires any

domain name contacted by a mini-app must be configured in the portal. By disallowing

"api.weixin.qq.com" (WeChat) and "openapi.baidu.com" (Baidu) to be configured, direct

server-side API calls can be prevented. It is possible that the mini-apps we have seen with

these direct server-side API calls have been developed before this restriction was enforced.

7.2.5 Switching to super-app bound dynamic secrets

As mentioned earlier, Paytm and Alipay’s use of user-bound (as opposed to mini-app-

bound in WeChat, Baidu) authorization tokens, generated and managed by the super-app,

replaces fixed app secrets. While binding to a user involves the user to click, this may be

necessary since otherwise the initial trust remains a question, e.g., without prompting the

user explicitly, ensuring the request’s authenticity is difficult.

65

7.3 Limitations

The mini-apps obtained from the WeChat platform whether collected manually or through

the use of crawlers, might typically undergo obfuscation. The unpacker utilized in our

framework, which is widely recognized within the community, is considered the most pop-

ular tool for unpacking mini-apps. However, while utilizing this tool, approximately 4% of

WeChat mini-apps were not unpacked completely, leading to the generation of obfuscated

files. This affects the analysis, as our framework performs static analysis on the mini-app

code to detect the hard-coded app secrets. If app secrets are present within the obfuscated

code, our framework may inadvertently overlook them during the analysis. Secondly, as

part of our analysis, we installed the WeChat client application on a rooted Android device

to access the mini-app packages. Our recent experiment showed that any WeChat account

created on a rooted device would be blocked from further use on that device.

7.4 Disclosure and Ethical considerations

We have taken careful consideration to contemplate the ethical implications when designing

our analysis framework. We had to generate the access tokens for the corresponding 53,377

mini-apps comprising both WeChat and Baidu, to verify if the identified secrets can lead

to security and privacy exposures; note that secrets can be changed by developers, and

enabling IP whitelisting can make leaked secrets unexploitable. We refrained from calling

any Modify API to avoid modification or deletion of mini-app data; we verified such APIs

only on our test mini-app we created for research. To understand and measure the real and

66

immediate threat to mini-apps with valid access tokens, we call only those Get APIs whose

results can be used to call the Modify APIs in order to verify if a mini-app’s data can be

modified. We also did not arbitrarily call any server-side API to avoid resource exhaustion.

According to the regulations from our university’s Research Ethics Unit, we took multiple

precautions to prevent the exposure of secrets from our collection database. We did not

store any unnecessary data returned from the calls and erased the minimally captured data

appropriately after the analysis. As stated by the principle of justice, the population that

benefits from an experiment should be the same that takes the risk of that experiment [34].

From this perspective, we believe the advantages that mini-apps may gain from our research

may outweigh the minimized risks that may arise from the data collection. Meanwhile, we

have also responsibly disclosed our findings to Tencent and Baidu, including the list of all

the server-side APIs that can be abused when the app secret is known. Tencent notified us,

stating, “For increments, we will have a review mechanism, and if hard-coded is detected, it

will not be approved for release. For inventory, we will notify developers to fix it, but some

developers don’t fix it, such is the case in your report.” Although we successfully reported

to Baidu using their portal, it was more complicated than Tencent. The email to their

security team (security@baidu.com) was declined because of authentication requirement,

and the report required a Chinese phone number to be bound to the reporting account.

67

7.5 Future work

We have presented the app secret leakage issues in popular mini-app platforms, which is the

result of non-compliance of mini-apps with the super-app’s security guidelines. Our current

study is mainly centered on measuring WeChat mini-apps (as well as a smaller number of

Baidu mini-apps). A similar study on other super-app platforms and their server-side APIs

can be performed as future work. In addition, the future research can further delve deeper

into identifying other insecure development practices adopted by the mini-app developers

in several platforms and how these could contribute to security vulnerabilities.

68

Bibliography

[1] Adchina. The power of the Baidu super-app, 2022. Available at: https://www.adchina.

io/what-is-baidu/.

[2] Alipay. Get access token API, 2023. Available at: https://miniprogram.alipay.com/

docs/miniprogram/mpdev/v2_applytoken.

[3] Baidu. Get access token API, 2023. Available at: https://smartprogram.baidu.com/

docs/develop/serverapi/serverapilist/.

[4] Baidu. Mini-app directory structure, 2023. Available at: https://smartprogram.baidu.

com/docs/develop/framework/app_service/.

[5] Baidu. Get session key API, 2023. Available at: https://smartprogram.baidu.com/

docs/develop/api/open/getSessionKey/.

[6] Supraja Baskaran, Lianying Zhao, Mohammad Mannan, and Amr Youssef. Measur-

ing the leakage and exploitability of authentication secrets in super-apps: The wechat

case. In Proceedings of the ACM SIGSAC Conference on Computer and Communi-

cations Security, RAID ’23, Hong Kong, China, October 2023.

69

https://www.adchina.io/what-is-baidu/
https://www.adchina.io/what-is-baidu/
https://miniprogram.alipay.com/docs/miniprogram/mpdev/v2_applytoken
https://miniprogram.alipay.com/docs/miniprogram/mpdev/v2_applytoken
https://smartprogram.baidu.com/docs/develop/serverapi/serverapilist/
https://smartprogram.baidu.com/docs/develop/serverapi/serverapilist/
https://smartprogram.baidu.com/docs/develop/framework/app_service/
https://smartprogram.baidu.com/docs/develop/framework/app_service/
https://smartprogram.baidu.com/docs/develop/api/open/getSessionKey/
https://smartprogram.baidu.com/docs/develop/api/open/getSessionKey/

[7] ByteDance. Duoyin, 2023. https://developer.open-douyin.com/docs/resource/zh-CN/

mini-app/introduction/overview/.

[8] ByteDance. Tiktok - overseas version of duoyin, 2023. https://www.tiktok.com/.

[9] Chinese article. Extracting WeChat mini-apps under windows, 2022. Online blog

article (in Chinese). Available at: https://zone.huoxian.cn/d/883-pcfirda.

[10] DingTalk. Mini-app API documentation, 2023. Available at: https://open.dingtalk.

com/document/orgapp/how-to-call-apis.

[11] Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu, Jian Liu, Zhou Li, Fenghao

Xu, Kai Chen, Xiaofeng Wang, and Kehuan Zhang. Understanding Android obfus-

cation techniques: A large-scale investigation in the wild. In Security and Privacy in

Communication Networks, SecureComm’18, Cham, August 2018.

[12] Duoyin. Get access token API, 2023. Available at: https://microapp.bytedance.com/

docs/zh-CN/mini-app/develop/server/interface-request-credential/get-access-token/.

[13] GitHub. Wxapkg decryptor, 2023. Available at: https://github.com/BlackTrace/pc_

wxapkg_decrypt.

[14] GitHub. WeChat mini-apps unpacker, 2023. Available at: https://github.com/Ryan-

Miao/wxappUnpacker.

[15] Lei Hao, Fucheng Wan, Ning Ma, and Yicheng Wang. Analysis of the development

of WeChat mini program. Journal of Physics: Conference Series, 1087(6):062040,

September 2018.

70

https://developer.open-douyin.com/docs/resource/zh-CN/mini-app/introduction/overview/
https://developer.open-douyin.com/docs/resource/zh-CN/mini-app/introduction/overview/
https://www.tiktok.com/
https://zone.huoxian.cn/d/883-pcfirda
https://open.dingtalk.com/document/orgapp/how-to-call-apis
https://open.dingtalk.com/document/orgapp/how-to-call-apis
https://microapp.bytedance.com/docs/zh-CN/mini-app/develop/server/interface-request-credential/get-access-token/
https://microapp.bytedance.com/docs/zh-CN/mini-app/develop/server/interface-request-credential/get-access-token/
https://github.com/BlackTrace/pc_wxapkg_decrypt
https://github.com/BlackTrace/pc_wxapkg_decrypt
https://github.com/Ryan-Miao/wxappUnpacker
https://github.com/Ryan-Miao/wxappUnpacker

[16] Pili Hu, Ronghai Yang, Yue Li, and Wing Cheong Lau. Application impersonation:

problems of OAuth and API design in online social networks. In Proceedings of

the Second ACM Conference on Online Social Networks, COSN’14, Dublin, Ireland,

October 2014.

[17] Haoran Lu, Luyi Xing, Yue Xiao, Yifan Zhang, Xiaojing Liao, XiaoFeng Wang, and

Xueqiang Wang. Demystifying resource management risks in emerging mobile app-

in-app ecosystems. In Proceedings of the ACM SIGSAC Conference on Computer and

Communications Security, CCS’20, Virtual Event, USA, October 2020.

[18] Michael Meli, Matthew R McNiece, and Bradley Reaves. How bad can it git? char-

acterizing secret leakage in public GitHub repositories. In Network and Distributed

Systems Security Symposium, NDSS’19, San Diego, CA, USA, February 2019.

[19] Microsoft. Detect secrets - credentials scanning tool, 2023. Avail-

able at: https://microsoft.github.io/code-with-engineering-playbook/continuous-

integration/dev-sec-ops/secret-management/recipes/detect-secrets/.

[20] Mitre. CWE top 25, 2023. Available at: https://cwe.mitre.org/top25/archive/2022/

2022_cwe_top25.html.

[21] NVD. CVSS calculator, 2023. Available at: https://nvd.nist.gov/vuln-metrics/cvss/

v3-calculator.

[22] OWASP. OWASP top 10 API, 2023. Available at: https://owasp.org/www-project-

api-security/.

71

https://microsoft.github.io/code-with-engineering-playbook/continuous-integration/dev-sec-ops/secret-management/recipes/detect-secrets/
https://microsoft.github.io/code-with-engineering-playbook/continuous-integration/dev-sec-ops/secret-management/recipes/detect-secrets/
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/

[23] Paytm. Mini-app API documentation, 2023. Available at: https://business.paytm.

com/docs/api/miniapps/login-flow/getaccesstoken.

[24] Postman. Postman API platform, 2023. Available at: https://www.postman.com/.

[25] Property Guru for Business. The power of the WeChat super-app, 2023. Avail-

able at: https://www.propertyguruforbusiness.com/publications/the-power-of-the-

wechat-super-app.

[26] QQ. Mini-app API documentation, 2023. Available at: https://q.qq.com/wiki/

develop/miniprogram/server/open_port/port_use.html.

[27] Aakanksha Saha, Tamara Denning, Vivek Srikumar, and Sneha Kumar Kasera. Se-

crets in source code: Reducing false positives using machine learning. In Conference

on Communication Systems & Networks, COMSNETS’20, Bengaluru, India, June

2020.

[28] Scmp.com. WeChat mini programs for banking pose ‘significant’ risks of personal

data leakage, 2021. Available at: https://www.scmp.com/tech/tech-trends/article/

3142239/wechat-mini-programs-banking-pose-significant-risks-personal-data.

[29] Shangcheng Shi, Xianbo Wang, and Wing Cheong Lau. MoSSOT: An automated

blackbox tester for single sign-on vulnerabilities in mobile applications. In Proceed-

ings of the 2019 ACM Asia Conference on Computer and Communications Security,

Asia CCS’19, Auckland, New Zealand, July 2019.

[30] Vibha Singhal Sinha, Diptikalyan Saha, Pankaj Dhoolia, Rohan Padhye, and Senthil

72

https://business.paytm.com/docs/api/miniapps/login-flow/getaccesstoken
https://business.paytm.com/docs/api/miniapps/login-flow/getaccesstoken
https://www.postman.com/
https://www.propertyguruforbusiness.com/publications/the-power-of-the-wechat-super-app
https://www.propertyguruforbusiness.com/publications/the-power-of-the-wechat-super-app
https://q.qq.com/wiki/develop/miniprogram/server/open_port/port_use.html
https://q.qq.com/wiki/develop/miniprogram/server/open_port/port_use.html
https://www.scmp.com/tech/tech-trends/article/3142239/wechat-mini-programs-banking-pose-significant-risks-personal-data
https://www.scmp.com/tech/tech-trends/article/3142239/wechat-mini-programs-banking-pose-significant-risks-personal-data

Mani. Detecting and mitigating secret-key leaks in source code repositories. In

IEEE/ACM 12th Working Conference on Mining Software Repositories, MSR’15,

Florence, Italy, May 2015.

[31] Sixthtone. China’s ‘mini-apps’ have big privacy issues, report says, 2020. Available

at: https://www.sixthtone.com/news/1006196.

[32] Tencent. Tencent cloud API overview, 2023. Available at: https://cloud.tencent.com/

document/api/876/34809.

[33] Time Business News. WeChat mini-apps Risk Data Leaks, 2021. Available at: https:

//timebusinessnews.com/wechat-mini-apps-risk-data-leaks/.

[34] U.S. department of health and human services. The Belmont report - Ethical princi-

ples and guidelines for the protection of human subjects of research, 2018. Avail-

able at: https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/read-the-

belmont-report/index.html.

[35] Hui Wang, Yuanyuan Zhang, Juanru Li, Hui Liu, Wenbo Yang, Bodong Li, and Dawu

Gu. Vulnerability assessment of OAuth implementations in Android applications.

In Proceedings of the 31st Annual Computer Security Applications Conference, AC-

SAC’15, Los Angeles, CA, USA, December 2015.

[36] Hui Wang, Yuanyuan Zhang, Juanru Li, and Dawu Gu. The achilles heel of OAuth:

a multi-platform study of OAuth-based authentication. In Proceedings of the 32nd

73

https://www.sixthtone.com/news/1006196
https://cloud.tencent.com/document/api/876/34809
https://cloud.tencent.com/document/api/876/34809
https://timebusinessnews.com/wechat-mini-apps-risk-data-leaks/
https://timebusinessnews.com/wechat-mini-apps-risk-data-leaks/
https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/read-the-belmont-report/index.html
https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/read-the-belmont-report/index.html

Annual Conference on Computer Security Applications, ACSAC’16, Los Angeles,

California, USA, December 2016.

[37] Yin Wang, Ming Fan, Junfeng Liu, Junjie Tao, Wuxia Jin, Qi Xiong, Yuhao Liu,

Qinghua Zheng, and Ting Liu. Do as you say: Consistency detection of data practice

in program code and privacy policy in mini-app, 2023. Available at: https://arxiv.org/

pdf/2302.13860.pdf.

[38] Web archive. Extracting WeChat mini-apps using frida, 2022. Online blog arti-

cle (in Chinese). Available at: https://web.archive.org/web/20221215183356/https:

//www.ljczero.top/article/2022/9/5/144.html.

[39] WeChat. get access token API, 2023. Available at: https://developers.weixin.qq.com/

miniprogram/dev/OpenApiDoc/mp-access-token/getAccessToken.html.

[40] WeChat. Server-side API classification, 2023. Available at: https://developers.weixin.

qq.com/miniprogram/en/dev/api-backend/.

[41] WeChat. Server-side API classification v2, 2023. Available at: https://developers.

weixin.qq.com/miniprogram/dev/OpenApiDoc/.

[42] WeChat. Cloud base, 2023. Available at: https://developers.weixin.qq.com/

miniprogram/dev/wxcloud/basis/capabilities.html.

[43] WeChat. code2session API, 2023. Available at: https://developers.weixin.qq.com/

miniprogram/en/dev/api-backend/open-api/login/auth.code2Session.html.

74

https://arxiv.org/pdf/2302.13860.pdf
https://arxiv.org/pdf/2302.13860.pdf
https://web.archive.org/web/20221215183356/https://www.ljczero.top/article/2022/9/5/144.html
https://web.archive.org/web/20221215183356/https://www.ljczero.top/article/2022/9/5/144.html
https://developers.weixin.qq.com/miniprogram/dev/OpenApiDoc/mp-access-token/getAccessToken.html
https://developers.weixin.qq.com/miniprogram/dev/OpenApiDoc/mp-access-token/getAccessToken.html
https://developers.weixin.qq.com/miniprogram/en/dev/api-backend/
https://developers.weixin.qq.com/miniprogram/en/dev/api-backend/
https://developers.weixin.qq.com/miniprogram/dev/OpenApiDoc/
https://developers.weixin.qq.com/miniprogram/dev/OpenApiDoc/
https://developers.weixin.qq.com/miniprogram/dev/wxcloud/basis/capabilities.html
https://developers.weixin.qq.com/miniprogram/dev/wxcloud/basis/capabilities.html
https://developers.weixin.qq.com/miniprogram/en/dev/api-backend/open-api/login/auth.code2Session.html
https://developers.weixin.qq.com/miniprogram/en/dev/api-backend/open-api/login/auth.code2Session.html

[44] WeChat. Devtool stable version update log, 2023. Available at: https://developers.

weixin.qq.com/miniprogram/dev/devtools/stable.html.

[45] WeChat. Mini-app server domain name information, 2023. Available at: https://

developers.weixin.qq.com/miniprogram/en/dev/framework/ability/network.html.

[46] WeChat. Error codes developer error codes, 2023. Available at: https://developers.

weixin.qq.com/doc/oplatform/en/Return_codes/Return_code_descriptions.html.

[47] WeChat. Safety guidelines by WeChat, 2023. Available at: https:

//developers.weixin.qq.com/miniprogram/en/dev/framework/security.html#Code-

Management-and-Leaks.

[48] WeChat. WeChat, 2023. Available at: https://www.wechat.com/.

[49] WeChat. IDE devtool, 2023. Available at: https://developers.weixin.qq.com/

miniprogram/en/dev/devtools/download.html.

[50] WeChat. Mini-app directory structure, 2023. Available at: https://developers.weixin.

qq.com/miniprogram/en/dev/framework/structure.html.

[51] WeChat. Tencent cloud hosting, 2023. Available at: https://developers.weixin.qq.

com/minigame/dev/wxcloudrun/src/practice/call.html.

[52] Haohuang Wen, Juanru Li, Yuanyuan Zhang, and Dawu Gu. An empirical study

of SDK credential misuse in iOS apps. In 25th Asia-Pacific Software Engineering

Conference (APSEC), APSEC’18, Nara, Japan, December 2018.

75

https://developers.weixin.qq.com/miniprogram/dev/devtools/stable.html
https://developers.weixin.qq.com/miniprogram/dev/devtools/stable.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/ability/network.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/ability/network.html
https://developers.weixin.qq.com/doc/oplatform/en/Return_codes/Return_code_descriptions.html
https://developers.weixin.qq.com/doc/oplatform/en/Return_codes/Return_code_descriptions.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/security.html#Code-Management-and-Leaks
https://developers.weixin.qq.com/miniprogram/en/dev/framework/security.html#Code-Management-and-Leaks
https://developers.weixin.qq.com/miniprogram/en/dev/framework/security.html#Code-Management-and-Leaks
https://www.wechat.com/
https://developers.weixin.qq.com/miniprogram/en/dev/devtools/download.html
https://developers.weixin.qq.com/miniprogram/en/dev/devtools/download.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/structure.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/structure.html
https://developers.weixin.qq.com/minigame/dev/wxcloudrun/src/practice/call.html
https://developers.weixin.qq.com/minigame/dev/wxcloudrun/src/practice/call.html

[53] Wikipedia. Baidu, 2023. Available at: https://en.wikipedia.org/wiki/Baidu.

[54] Wikipedia. ICP license, 2023. Available at: https://en.wikipedia.org/wiki/ICP_

license.

[55] Yuqing Yang, Yue Zhang, and Zhiqiang Lin. Cross miniapp request forgery: Root

causes, attacks, and vulnerability detection. In Proceedings of the ACM SIGSAC

Conference on Computer and Communications Security, CCS’22, Los Angeles, CA,

USA, November 2022.

[56] Jianyi Zhang, Leixin Yang, Yuyang Han, Zhi Sun, and Zixiao Xiang. A small leak will

sink many ships: Vulnerabilities related to mini programs permissions. In Syposium

on Security, Trust, & Privacy in Computing, COMPSAC’23, Torino, Italy, June 2022.

[57] Lei Zhang, Zhibo Zhang, Ancong Liu, Yinzhi Cao, Xiaohan Zhang, Yanjun Chen,

Yuan Zhang, Guangliang Yang, and Min Yang. Identity confusion in webview-based

mobile app-in-app ecosystems. In 31st USENIX Security Symposium, USENIX’22,

Boston, MA, August 2022.

[58] Yue Zhang, Bayan Turkistani, Allen Yuqing Yang, Chaoshun Zuo, and Zhiqiang Lin.

A measurement study of Wechat mini-apps. ACM SIGMETRICS Performance Eval-

uation Review, 5(2):1–25, June 2021.

[59] Yue Zhang, Yuqing Yang, and Zhiqiang Lin. Don’t leak your keys: Understanding,

measuring, and exploiting the AppSecret leaks in mini-programs. In Proceedings of

76

https://en.wikipedia.org/wiki/Baidu
https://en.wikipedia.org/wiki/ICP_license
https://en.wikipedia.org/wiki/ICP_license

the ACM SIGSAC Conference on Computer and Communications Security, CCS’23,

Copenhagen, Denmark, November 2023.

77

Appendix A

Analysis results with DATASET 3

Table 7 provides the measurement results of the WeChat mini-apps from the DATASET 3.

It is to be noted that invokeFunctions calls functions are implemented by developers,

the actual impact vary a lot depending on what the function does. In the table, AT denotes

Access Token; [A] denotes Read Mini-app Data; [B] denotes Send Arbitrary Messages;

[C] denotes Data Tampering; [D] denotes Malicious Redirects, and [E] denotes Resource

Exhaustion; denotes the possibility of the attack using the corresponding server-side

API.

78

WeChat server-side APIs Required parameters # miniapps [A] [B] [C] [D] [E] Impact
clearQuotaByAppSecret appID, appSecret 2,572 High
clearQuota AT, appID 2,572 High
managePlugin AT, pluginAppID 433 High
deleteNearbyPoi AT, poiID 303 High
setShowStatus AT, poiID 303 High
managePluginApplication AT, appID 179 High
invokeCloudFunctions AT, CloudFunctionName 65 High
databaseCollectionGet AT, CloudEnv 21 High
databaseCollectionAdd AT, CloudEnv, CollectionName 21 High
databaseCollectionDelete AT, CloudEnv, CollectionName 21 High
databaseAdd AT, CloudEnv 21 High
databaseDelete AT, CloudEnv 21 High
databaseUpdate AT, CloudEnv 21 High
databaseQuery AT, CloudEnv 21 High
setUpdatableMsg AT 4 High
uploadTempMedia AT 2,572 Medium
getApiQuota AT, cgi_path 2,572 Medium
getDomainInfo AT 2,101 Medium
getAllDelivery AT 252 Medium
customerServiceMessage.send AT, openID 151 Medium
getPrinter AT 114 Medium
updatePrinter AT, openID 114 Medium
getFeedback AT 93 Medium
getQcloudToken AT 59 Medium
createActivityId AT 2,572 Low
getNearbyPoiList AT 303 Low

Table 7: Statistics of unauthorized callable WeChat server-side APIs for DATASET3.

79

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Overview
	Motivation
	Problem Statement
	Summary of Our Approach
	Contributions
	Thesis Organization
	Publication

	Background
	Basic Terminology
	Authentication Secret leakage problem
	Objective
	Threat Model

	Related Work
	Basic study on ms
	Security analysis on ms
	Identifying hard-coded secrets

	Methodology
	Methodology Overview
	Detection of hard-coded secrets
	Preparing the list of server-side APIs
	Obtaining the access token and the presence of IPwhitelisting
	Testing the server-side APIs

	Measurements
	Datasets
	Measurement Results
	Insecure Development Practices
	Unauthorized Invocation of WeChat Server-side APIs
	Unauthorized Invocation of Baidu Server-side APIs
	CVSS Scores
	Testing dangerous server-side APIs with our own m

	Temporal Comparison
	Prevalence over time
	Same-m comparison

	Implementation
	Efficiency
	Effectiveness

	Security Consequences
	Consequences from Server-side APIs
	Authentication bypass and entity impersonation
	Reading mini-app data
	Mini-app data tampering
	Resource exhaustion attacks
	Sending arbitrary messages and malicious redirects

	Consequences from Cloud Functions

	Conclusion and Future Works
	Key takeaways
	Root cause analysis
	Comparing WeChat and Baidu with other super-app platforms
	Mini-app to developer server authentication

	Recommendations
	Replacing the developer server with cloud features
	Mandating IP whitelisting
	Disallowing app secret hard-coding
	Disallowing server-side API invocation from mini-apps
	Switching to super-app bound dynamic secrets

	Limitations
	Disclosure and Ethical considerations
	Future work

	Bibliography
	Analysis results with DATASET 3

